

1

The opinion in support of the decision being entered today
is not binding precedent of the Board.

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE BOARD OF PATENT APPEALS
AND INTERFERENCES

Ex parte MARTIN G. REIFFIN

Appeal 2007-2127
Reexamination Control No. 90/006,621

Patent 5,964,604
Technology Center 3900

Decided: September 25, 2007

Before LEE E. BARRETT, JAMESON LEE, and SALLY C. MEDLEY,
Administrative Patent Judges.

BARRETT, Administrative Patent Judge.

DECISION ON APPEAL

 This is a decision on appeal under 35 U.S.C. §§ 134(b) and 306 from

the Final Rejection of claims 1-83.

 We affirm.

Appeal 2007-2127
Reexamination Control No. 90/006,621

2

 OUTLINE Page
REEXAMINATION PROCEEDING .. 6
CONTINUITY INFORMATION ... 6
PENDING AND RELATED LITIGATION .. 7
RELATED DECISION ... 8
THE INVENTION... 9
REFERENCES ... 12
REJECTIONS ... 13
DISCUSSION .. 15
 ARGUMENTS NOT MADE ARE WAIVED 15
 INTRODUCTION ... 15
 CLAIM INTERPRETATION ... 19
 Issues ... 19
 Principles of law .. 19
 Facts ... 20
 Analysis .. 25
 1. Terms stated to have ordinary meanings in the art 25
 2. Background explanation of "multithreading" 27
 a. Operating system ... 28
 b. Program ... 28
 c. Process .. 29
 d. Thread ... 29
 e. Operating System/2 (OS/2) ... 29
 f. Multitasking ... 30
 g. Concurrent execution .. 31
 h. Multitasking in a single processor system 32
 i. Task or context switching .. 33
 j. Thread scheduling and dispatching 35
 k. Multithreading .. 37
 l. Multithreaded versus sequential programs 39
 m. Advantages of multithreading ... 41
 n. Creating threads .. 42
 o. Asynchronous execution of threads 43
 p. A simple multithreading example 43

Appeal 2007-2127
Reexamination Control No. 90/006,621

3

 Page
 3. '604 patent's definition of "multithreading" 45
 4. Reexamination claims all recite "multithreading" 50
 5. Patent Owner's arguments are not persuasive 53
 a. Threads must be interruptible ... 53
 b. Ligler and Reiffin declarations ... 55
 c. More that one thread must be interrupted 58

 PRIORITY ... 61
 The rejections .. 61
 1. The district court decision .. 61
 2. Examiner's rejection .. 63
 Issue .. 64
 Principles of law ... 64
 Analysis ... 65
 1. "Multithreading" is not expressly disclosed 65
 2. "Continuation" designation is not controlling 66
 3. The 1982 application does not inherently
 disclose "multithreading" ... 67
 a. Editor is not interruptible ... 67
 b. Operation of the 1982 compiler/editor 71
 c. Since editor is not interruptible, it is not a thread................ 73
 d. Even if the editor was interruptible
 there is no multithreading .. 74
 e. Editor and compiler are not executed concurrently 75
 f. Editor and compiler are not in same program 77
 g. Editor does not have other "thread" attributes 79
 4. Examiner's rejection .. 80
 5. "Multithreading" in '604 patent is not examined
 for compliance with § 112 requirements 81
 6. Patent Owner's arguments are not persuasive 82
 a. Common "Detailed Description" does not
 prove there is written description support 82
 b. Reiffin v. Microsoft is not stare decisis 83

Appeal 2007-2127
Reexamination Control No. 90/006,621

4

 Page
 c. USPTO actions are not collateral estoppel 87
 d. Context of all threads must be capable of being saved 91
 e. Arguments about 1991 application not considered 92
 f. Effective date for "multithreading" is not 1982 93

 ANTICIPATION .. 93
 Krantz .. 93
 De Jong ... 94
 Issue .. 94
 Principles of law ... 94
 Facts .. 94
 Analysis .. 97

 OBVIOUSNESS ... 100
 Krantz and Nitta .. 100
 Issue .. 100
 Principles of law ... 100
 Facts .. 101
 1. Scope of prior art .. 101
 2. Content of Krantz ... 101
 3. Content of Nitta .. 103
 4. Differences .. 104
 5. Level of skill in the art .. 105
 6. Objective evidence .. 106
 Analysis .. 107
 1. Objective evidence is not entitled to any weight 107
 2. Spelling and grammar checking ... 109
 3. Error message ... 110
 4. Cursor movement, screen scroll, and line deletion 112
 5. General lexical and syntactic analysis 112
 6. Summary ... 116
 De Jong and Nitta or Heard .. 116

Appeal 2007-2127
Reexamination Control No. 90/006,621

5

 Page
 WRITTEN DESCRIPTION ... 116
 Preliminary issue ... 116
 Principles of law ... 117
 Facts .. 118
 Analysis.. 121

 Issue .. 123
 Principles of law ... 123
 Facts .. 124
 Analysis ... 124
 1. Group 1 ... 124
 2. Groups 2, 12, 30, 36, and 37 ... 126
 3. Groups 3, 5, 20, and 29 ... 129
 4. Group 4 ... 131
 5. Groups 6-11, 13-18, 26, and 31 .. 132
 a. Overlooked claims .. 133
 b. Analysis .. 133
 6. Group 19 ... 142
 7. Group 21 ... 144
 8. Group 22 ... 145
 9. Groups 23-25, 33, and 34 ... 146
 10. Group 27 ... 149
 11. Groups 28, 32, and 35 ... 150
 Summary ... 152

 BROADENING .. 152
 Issues ... 152
 Principles of law ... 152
 Analysis ... 153

CONCLUSION ... 154

Appeal 2007-2127
Reexamination Control No. 90/006,621

6

REEXAMINATION PROCEEDING

 A request was filed on May 6, 2003, for ex parte reexamination of the

claims of U.S. Patent 5,694,604 (the '604 patent) by the Patent Owner and

inventor Martin G. Reiffin.

 The '604 patent issued with claims 1-36. Original claims 1, 4, 6, 7,

14, 18, 22, 24, 26, 27, 31, and 33 were amended during reexamination.

Claims 37-83 were added during reexamination.

CONTINUITY INFORMATION

 The '604 patent, entitled "Preemptive Multithreading Computer

System with Clock Activated Interrupt," issued on December 2, 1997, based

on Application 08/217,669, filed March 25, 1994 (1994 application). The

'604 patent is said to be a continuation of Application 07/496,282, filed

March 20, 1990 (1990 application), now U.S. Patent 5,694,603 ('603 patent),

also issued December 2, 1997; which is said to be a continuation of

Application 06/719,507, filed April 3, 1985 (1985 application), now

abandoned; and a continuation of Application 06/425,612, filed

September 28, 1982 (1982 application), now abandoned.

 In this appeal, the "1994 application" is used to refer to the application

which became the '604 patent, for example, when discussing events that

happened before the patent issued. Similarly, the "1990 application" is used

to refer to the application which became the '603 patent.

Appeal 2007-2127
Reexamination Control No. 90/006,621

7

PENDING AND RELATED LITIGATION

 The '603 and '604 patents are the subject of an infringement action,

Reiffin v. Microsoft Corp., No. C 98-266 (N.D. Cal. filed Jan. 23, 1998).

That civil action has been stayed pending the outcome of this reexamination.

 There have been numerous decisions related to this litigation. The

three most relevant decisions to this appeal are:

 Reiffin v. Microsoft Corp., 214 F.3d 1342, 54 USPQ2d 1915 (Fed. Cir.

2000). The Federal Circuit held that the district court erred in looking to the

text of the original 1982 application to determine whether the '603 and '604

patents, filed in 1990 and 1994, comply with the written description

requirement when there was no reliance on the benefit of the 1982 filing

date. The court reversed and remanded. The majority did not reach the

validity of the "omitted element test" relied upon by the district court.

 Reiffin v. Microsoft Corp., 64 USPQ2d 1107 (N.D. Cal. 2002). The

district court's claim construction hearing (Doc # 365 in civil action).

 Reiffin v. Microsoft Corp., 270 F. Supp. 2d 1132 (N.D. Cal. 2003).

The district court decision on eight motions granting Microsoft's motion for

partial summary judgment of invalidity of the '603 patent under 35 U.S.C.

§ 112, first paragraph, for lack of written description, and finding that the

'604 patent is not entitled to a priority of 1990 or earlier under § 120.

Appeal 2007-2127
Reexamination Control No. 90/006,621

8

RELATED DECISION

 A related decision is In re Reiffin, 199 Fed. Appx. 965 (Fed. Cir.

2006) (nonprecedential) involving Application 07/711,957, filed

June 7, 1991 (1991 application). The 1991 application is stated to be a

continuation-in-part of the 1990 application (now the '603 patent). Reiffin

involved many of the same issues as presented in this appeal.

 The Federal Circuit affirmed the Board's interpretation of "threads,"

multithreading," "concurrent execution," and "sequential versus concurrent

programs." Interpretation of these terms is an important issue in this appeal.

The Federal Circuit also affirmed the Board's new ground of rejection under

35 U.S.C. § 112, first paragraph, for lack of written description for the terms

"threads" and "multithreading." This issue is involved in the priority

determination in this case (because this is a reexamination, the issue of

written description in the '604 patent itself is not raised). The Federal

Circuit affirmed the Board's new ground of rejection under 35 U.S.C. § 112,

first paragraph, for lack of enablement as to concurrent lexical analysis, i.e.,

spelling checking or grammar checking "as you type" (because this is a

reexamination, the issue of enablement in the '604 patent is not raised).

Lastly, the Federal Circuit affirmed the anticipation rejection of three claims.

Appeal 2007-2127
Reexamination Control No. 90/006,621

9

THE INVENTION

 The claims are directed to a clock-driven "preemptive multithreading"

method (claims 1-9, 37, 63-68) and "preemptive multithreading" computer

system (claims 10-36, 38-62, and 69-83).

 The 1982, 1985, 1990, and 1994 applications all share the same

"Detailed Description" portion of the specification. The 1982 application

described that a problem with programming in a compiled high-level

programming language is that "a compiled language requires a repeated

sequence of steps comprising loading the editor, writing or editing the

source code, loading the compiler, executing the compiler, loading the

linker, executing the linker, running the program, and repeating the sequence

when an error is indicated during compilation of the source code or

execution of the object code" (1982 application, page 2). The 1982

application describes a computer system in which a high-level language

"source code" program is "compiled" by a compiler into an "object code"

program on a line-by-line basis as each line of the program is entered at the

console by the programmer, i.e., an "incremental compiler."

 The 1982 application is accurately described in Reiffin v. Microsoft,

214 F.3d at 1344, 54 USPQ2d at 1916:

 In 1982 Mr. Reiffin filed a patent application entitled

"Computer System with Real-time Compilation." The application
discloses a system in which a combination of software and hardware
compiles a computer program concurrently with the program's entry
into an editor, achieving what is described as "contemporaneous
real-time entry and compilation of a source program." A source
program is a computer program written in a high level human
readable language which the application refers to as source code; the
end product of the compilation of the source program is a binary

Appeal 2007-2127
Reexamination Control No. 90/006,621

10

machine language composition which the application refers to as
object code, and which is required for the program's execution by a
computer. We also take notice of the following definitions [of
"compile" and "editor"]

 The system as described in the specification utilizes an

"interrupt mode of operation" to allow the computer's Central
Processing Unit ("CPU") to execute a compiler and an editor
seamlessly as viewed by the computer user. In normal operation the
compiler is continuously executed by the CPU; as the compiler is
executed it performs lexical, syntactic, and semantic analyses of
program source code stored in a source buffer in the computer's
memory, outputting compiled object code into an object buffer.
Whenever the computer user strikes a key on the keyboard, a so-called
"interrupt sequence" causes the compiler's execution to pause and
directs the CPU to execute the editor. After the editor performs
whatever operation is required by the keystroke (for example, entering
an alphanumeric character into the source buffer), a "return"
instruction is executed by the CPU. This return instruction ends the
interrupt sequence and causes the CPU to resume its normal state in
which the compiler is continuously executed. The specification also
describes an alternative embodiment in which the interrupt sequence
is activated by a timer or clock instead of by the keyboard.

 The system involves two separate programs: (1) a compiler program;

and (2) a keyboard interrupt service routine (a program) which contains an

editor. Two kinds of interrupts are disclosed: (1) a keyboard interrupt where

striking a key on the keyboard causes an interrupt; and (2) a timer- or clock-

activated interrupt where a hardware timer periodically causes an interrupt.

Appeal 2007-2127
Reexamination Control No. 90/006,621

11

 Claim 1 is reproduced below (additions to the original patent claim

are underlined, see 37 C.F.R. § 1.530(f)(2)).

 1. A method of preemptive multithreading operation of a
computer including a clock and a central processing unit having an
interrupt operation so as to provide for the execution of a program
having a task comprising a plurality of processing subtasks each
performed concurrently on alphanumeric data by a respective one of a
plurality of processing instruction threads of said program, said
method comprising

 periodically actuating said interrupt operation in response to

said clock at predetermined time intervals to provide a
plurality of series of spaced timeslices with a respective
series of said plurality of series allocated for the
execution of each thread and with the timeslices of each
series of timeslices of said plurality of series interleaved
with the timeslices of at least one other series of said
plurality of series,

 preempting an executing processing thread of said program in

response to each actuation of said interrupt operation so
as to terminate the timeslice of execution of said
executing thread and to take control of the central
processing unit away from said executing thread after the
latter has executed only a portion of its respective subtask
performed on said alphanumeric data,

 passing said control of the central processing unit to another

processing thread of said same program and thereby
invoking said another thread to perform a next successive
portion of the respective subtask performed on said
alphanumeric data of said another thread during the next
successive timeslice of the respective series of timeslices
of said another thread,

Appeal 2007-2127
Reexamination Control No. 90/006,621

12

 thereafter returning control of the central processing unit to a
previously preempted thread of said same program to
enable said previously preempted thread to perform the
next successive portion of its respective subtask during
the next timeslice of its respective series of spaced
timeslices,

 and repeating the above-recited cycle of said clock responsive

actuation of the interrupt operation, said thread
preemption and said thread invocation, until the
respective subtasks of the threads of said program are
completed,

 whereby each subtask portion is executed during a respective

timeslice with the subtask portion of one processing
thread interleaved with the subtask portions of at least
one other processing thread to provide concurrent and
effectively simultaneous execution of the threads.

REFERENCES

 Nitta US 4,641,264 Feb. 3, 1987
 (filed Sep. 7, 1982)

 Heard US 4,689,768 Aug. 25, 1987
 (filed June 30, 1982)

 Marvin L. De Jong (De Jong), Apple II® Assembly Language

(Howard W. Sams & Co., Inc. June 2, 1982).

 Ray Duncan, Advanced OS/2 Programming (Microsoft Press 1989),

pages 7, 8, 143, 144, 228-39, 296, 499, and 779.

 Michael J. Young, Programmer's Guide to OS/2 (Sybex 1988),

pages 39, 78, 178-91.

Appeal 2007-2127
Reexamination Control No. 90/006,621

13

 Microsoft® Operating System/2 Programmer's Reference Version 1.1
(Microsoft Press 1989), pages 22, 23, and 587-598.

 Gordon Letwin, Inside OS/2 (Microsoft Press 1988), pages 71-72.

 Jeffrey I. Krantz et al., OS/2™: Features, Functions and Applications

(John Wiley & Sons, Inc. 1988), page 5, 6, 8-17, 20, 21, 39, 57-59, 63,
64, 68, 93, 94, 98-100, 112, 168, 188, and 189.

 The Examiner also relies on the following reference to establish how

the Z80 microprocessor works:

 Rodnay Zaks, Programming the Z80 (3d ed. Sybex 1982),
pages 500-502.

REJECTIONS

 The Examiner finds that none of the reexamination claims are entitled

to claim priority of the filing dates of the 1990, 1985, or 1982 applications

under 35 U.S.C. § 120 because they do not disclose "multithreading."

 Original claims 1, 4, 6, 7, 14, 18, 24, 26, 27, 31, and 33, as amended,

and newly added claims 37-83 stand rejected under 35 U.S.C. § 112, first

paragraph, based on lack of written description.

 Claims 1-38, 44-47, 50, 57-60, 68-72, 75, and 80-83 stand rejected

under 35 U.S.C. § 102(b) as being anticipated by De Jong.

 Claims 39-43, 48, 49, 51-56, 61-67, 73, 74, and 76-79 stand rejected

under 35 U.S.C. § 103(a) as being unpatentable over De Jong and Heard.

 Claims 39-43, 48, 49, 51-56, 61-67, 73, 74, and 76-79 stand rejected

under 35 U.S.C. § 103(a) as being unpatentable over De Jong and Nitta.

 Claims 1-38, 44-47, 50, 57-60, 68-72, 75, and 80-83 stand rejected

under 35 U.S.C. § 102(b) as being anticipated by Krantz, OS/2: Features,

Appeal 2007-2127
Reexamination Control No. 90/006,621

14

Functions and Applications (Final Rejection 110). In the Examiner's

Answer, the Examiner further rejects the claims as anticipated by any one of

four other references discussing Operating System/2 (OS/2): (a) Duncan,

Advanced OS/2 Programming; (b) Microsoft Operating System/2

Programmer's Reference; (c) Young, Programmer's Guide to OS/2; or

(d) Letwin, Inside OS/2. (Answer 125-26 ¶ VII.1.) Since Patent Owner

only argues that Krantz is not a proper reference because the '604 patent is

entitled to the 1982 filing date, and does not contest the anticipation

rejection over Krantz, it is not necessary to decide whether these other

rejections are properly before us or to discuss references (a) to (d).

 Claims 39-43, 48, 49, 51-56, 61-67, 73, 74, and 76-79 stand rejected

under 35 U.S.C. § 103(a) as being unpatentable over Krantz and Nitta.

Although the Examiner's Answer adds rejections over the other four OS/2

references noted in the anticipation rejection, the rejection only discusses

Krantz. Accordingly, the rejection is limited to Krantz and Nitta.

 Claims 1, 4, 6, 7, 14, 18, 24, 26, 27, 31, 33, 39-43, 47-49, 51-56, 61,

65-73, 75, 78, 79, 81, and 83 stand rejected under 35 U.S.C. § 305 as

impermissibly enlarging the scope of the claims of the '604 patent.

Appeal 2007-2127
Reexamination Control No. 90/006,621

15

DISCUSSION

ARGUMENTS NOT MADE ARE WAIVED

 Arguments not made are waived. See 37 C.F.R. § 41.37(c)(1)(vii)

("Any arguments or authorities not included in the brief or a reply brief . . .

will be refused consideration by the Board, unless good cause is shown.");

In re Watts, 354 F.3d 1362, 1367, 69 USPQ2d 1453, 1457 (Fed. Cir. 2004)

("Just as it is important that the PTO in general be barred from raising new

arguments on appeal to justify or support a decision of the Board, it is

important that the applicant challenging a decision not be permitted to raise

arguments on appeal that were not presented to the Board." (Footnote

omitted.)). Cf. In re Baxter Travenol Labs., 952 F.2d 388, 391, 21 USPQ2d

1281, 1285 (Fed. Cir. 1991) ("It is not the function of this court to examine

the claims in greater detail than argued by an appellant, looking for

nonobvious distinctions over the prior art.").

 Patent Owner submits declarations by Dr. George T. Ligler and a

declaration by himself, Martin G. Reiffin, and an Appendix of Exhibits. We

consider these declarations and exhibits only to the extent they are argued.

INTRODUCTION

 Patent Owner filed an application in 1982 to a computer system for

writing and compiling computer programs. See Reiffin v. Microsoft Corp.,

214 F.3d at 1344, 54 USPQ2d at 1916, quoted supra. In 1985, Patent

Owner filed an application stated to be a continuation-in-part of the 1982

application and having the same specification and drawings, but adding a

computer program appendix. In 1990, Patent Owner filed an application

stated to be a continuation-in-part of the 1982 application (later amended to

Appeal 2007-2127
Reexamination Control No. 90/006,621

16

designate it a continuation of the 1982 and 1985 applications) which:

(1) omitted the computer program appendix; and (2) added that the code

processed by the program can be a natural language, such as English, or the

numbers and strings of a spreadsheet or database, and that lexical analysis

may be used to determine correct spelling and syntactic analysis may be

used to determine correct grammar of a natural language code.

 The IBM and Microsoft Corporations jointly developed a new

operating system called Operating System/2 (OS/2), which was announced

in 1987 and extensively written about beginning in 1988. OS/2 was the first

major operating system with support for "threads" and "multithreading."

 Patent Owner decided that the terms "threads" and "multithreading"

were coined or became common in the art after the filing of his 1982

application and described his invention. Patent Owner began amending his

1990 application after it was filed to disclose and claim "threads" and

"multithreading." Patent Owner stated during prosecution that these terms

had their ordinary and customary meanings in the art, that he did not intend

"multithreading" to have a definition which is distinct from the ordinary

generally understood meaning to those skilled in the art, and referred to

dictionaries and books as evidence of the well-defined meanings in the art.

The examiner did not object to the amendments to the specification under

35 U.S.C. § 132 as new matter, or reject the claims based on lack of written

description under § 112, first paragraph. The examiner accorded the 1990

application the benefit of the 1982 filing date because he did not reject the

claims over OS/2, although several OS/2 references were cited by the Patent

Owner. The application issued as the '603 patent in 1997.

Appeal 2007-2127
Reexamination Control No. 90/006,621

17

 In 1994, Patent Owner filed an application which was stated to be a

continuation of the 1990, 1985, and 1982 applications. The 1994

application, as filed, contained the same "Detailed Description" as the

ancestor applications, but: (1) defined "multithreading"; and (2) omitted the

description in the 1990 application that the code could be a natural language,

such as English, and that lexical and syntactic analyses could be used for

checking spelling and grammar of a natural language. The 1994 application

issued as the '604 patent on the same day as the '603 patent in 1997.

 In the reexamination proceeding, a different examiner determined that

the '604 patent claims, including the claims amended and added during

reexamination, were not entitled to the priority filing date benefit of the

1982, 1985, or 1990 applications under 35 U.S.C. § 120 because the

applications, as filed, did not provide express or inherent written description

support under § 112, first paragraph, for the limitation "multithreading."

The Examiner rejected many of the claims as anticipated by the 1988 Krantz

reference which describes OS/2, and the remainder of the claims over Krantz

in combination with another reference.

 The Examiner also rejected all of the claims as anticipated under

§ 102 over De Jong, or as unpatentable under § 103(a), over De Jong and

patents having filing dates before the 1982 filing date.

 The Examiner also rejected numerous proposed amended and new

claims under 35 U.S.C. § 112, first paragraph, based on lack of written

description in the '604 patent. Of particular note, the Examiner concluded

that Patent Owner could not amend the '604 patent to add subject matter

from the 1990 application stating that the code processed by the program

Appeal 2007-2127
Reexamination Control No. 90/006,621

18

may be a natural language such as English, instead of a formal programming

language, which was omitted in filing the 1994 application as filed.

 Lastly, the Examiner rejected many claims as impermissibly enlarging

the scope of the '604 patent claims.

 The most important issue is claim interpretation: what are the

definitions of "threads" and "multithreading"? Based on this interpretation,

the next issue is whether the '604 patent is entitled to priority of the 1982

application filing date. If it is not, Patent Owner does not contest the

anticipation rejection over the 1988 Krantz reference describing OS/2. Our

conclusion is that the 1982 application does not provide a written description

of "multithreading" as defined in the '604 patent and the art, i.e., Patent

Owner is mistaken in his understanding that "multithreading" describes his

disclosed invention. Accordingly, the '604 patent is only entitled to its 1994

filing date and the 1988 Krantz reference is prior art. The anticipation

rejection over Krantz and several of the obviousness rejections are affirmed.

 The anticipation and obviousness rejections over De Jong are reversed

because De Jong does not teach "multithreading" for the same reasons the

1982 application does not teach multithreading.

 We also conclude that Patent Owner is not entitled to amend the '604

patent to add subject matter which was omitted from the parent 1990

application because this would add new matter. The '604 patent does not

provide written description support for limitations dealing with words and

sentences of a natural language, such as English, and spelling and grammar

checking of words and sentences of a natural language. However, most of

the written description rejections are reversed.

 Lastly, the rejection for broadening is reversed.

Appeal 2007-2127
Reexamination Control No. 90/006,621

19

CLAIM INTERPRETATION

 Issue

 The first step in any patentability analysis is to interpret the claims.

The issue is the meanings of the claim terms "threads" and "multithreading."

 Principles of law

 The words of a claim are generally given their "ordinary and

customary meaning" where "the ordinary and customary meaning of a claim

term is the meaning that the term would have to a person of ordinary skill in

the art in question at the time of the invention, i.e., as of the effective filing

date of the application." Phillips v. AWH Corp., 415 F.3d 1303, 1313,

75 USPQ2d 1321, 1326 (Fed. Cir. 2005) (en banc). "Because the meaning

of a claim term as understood by persons of skill in the art is often not

immediately apparent, and because patentees frequently use terms

idiosyncratically, the court looks to 'those sources available to the public that

show what a person of skill in the art would have understood the disputed

claim language to mean.' Those sources include 'the words of the claims

themselves, the remainder of the specification, the prosecution, and extrinsic

evidence concerning relevant scientific principles, the meaning of technical

terms, and the state of the art.'" (Citations omitted.) Id. at 1314,

75 USPQ2d at 1327. The claims, the specification, and the prosecution

history are "intrinsic evidence." All evidence external to the patent and

prosecution history, such as dictionaries and treatises, and expert testimony,

is "extrinsic evidence." After the claims, the patent's specification is "the

single best guide to the meaning of a disputed term." Id. at 1315,

75 USPQ2d at 1327 (quoting Vitronics Corp. v. Conceptronic, Inc.,

Appeal 2007-2127
Reexamination Control No. 90/006,621

20

90 F.3d 1576, 1582, 39 USPQ2d 1573, 1577 (Fed. Cir. 1996)). Next in

importance is the prosecution history, which directly reflects how the

patentee has characterized the invention. Id. at 1317, 75 USPQ2d at 1329.

Extrinsic evidence, such as testimony, dictionaries, learned treatises, or other

material not part of the public record associated with the patent, may be

helpful but is "less significant than the intrinsic record in determining the

legally operative meaning of claim language." Id., 75 USPQ2d at 1330

(quoting C.R. Bard, Inc. v. U.S. Surgical Corp., 388 F.3d 858, 862,

73 USPQ2d 1011, 1014 (Fed. Cir. 2004)).

 "Although words in a claim are generally given their ordinary and

customary meaning, a patentee may choose to be his own lexicographer and

use terms in a manner other than their ordinary meaning, as long as the

special definition of the term is clearly stated in the patent specification or

file history. . . . Thus, . . . it is always necessary to review the specification

to determine whether the inventor has used any terms in a manner

inconsistent with their ordinary meaning." Vitronics v. Conceptronic,

90 F.3d at 1582, 39 USPQ2d at 1576.

 Facts

1. None of the 1982, 1985, and 1990 applications, as filed, mention

"threads" or "multithreading."

2. Beginning with Preliminary Amendment B of June 18, 1990 (Paper

No. 3, filed June 18, 1990) in the 1990 application, Patent Owner began to

amend the 1990 specification and to file claims having the terminology of

"threads" and "multithreading." This amendment is not part of the original

disclosure of the 1990 application. See Manual of Patent Examining

Appeal 2007-2127
Reexamination Control No. 90/006,621

21

Procedure (MPEP) § 714.01(e) ("Any amendment filed after the filing date

of the application is not part of the original disclosure of the application").

3. The amendments to the 1990 application: added "multithreading"

disclosure to the specification (now found in the '603 patent at col. 1, line 24

to col. 2, line 55); rewrote the abstract to describe the invention in terms of

"multithreading"; changed the title from "Computer System with Real-Time

Code Processing" to "Computer Memory Product with Preemptive

Multithreading Software"; and added claims to "multithreading."

4. The 1990 application was amended to recite: "Therefore the present

invention is entitled to an effective filing date of September 28, 1982" (now

found at '603 patent, col. 1, lines 13-14). Amendment O (Paper No. 66, filed

December 4, 1996).

5. Throughout the prosecution of the 1990 application, Patent Owner

stated that the terms "threads" and "multithreading" have their ordinary

meanings in the art, that he did not intend "multithreading" to have a

definition which is distinct from the ordinary generally understood meaning

to those skilled in the art, and referred to dictionaries and books as evidence

of the well-defined meanings in the art, as listed below.

6. In Amendment D (Paper No. 6, filed August 6, 1992),, Patent Owner

referred to Herbert Schildt, Born to Code in C (McGraw-Hill 1989), Thuyen

Nguyen and Robert Moskal, Advanced Programmer's Guide to OS/2 (Brady

Books 1989), J.W. Cooper, Writing Scientific Programs Under the OS/2

Presentation Manager (Wiley & Sons 1990), and Michael J. Young,

Programmer's Guide to OS/2 (Sybex 1988) for discussions of "threads," and

Appeal 2007-2127
Reexamination Control No. 90/006,621

22

to the Microsoft Press Computer Dictionary (Microsoft Press 1991), for

definitions of "concurrent" and "concurrent execution." 1

7. Patent Owner filed a Fourth Affidavit of Applicant (Paper No. 8, filed

December 21, 1992) in the 1990 application, referring to Exhibits B to G,

which are excerpts from the following books, for discussions of "threads,"

"multithreading," "preemptive," and "concurrent":

 Exhibit B: Helen Custer, Inside Windows NT (Microsoft Press 1993),
 pages 90-97;

 Exhibit C: Ray Duncan, Advanced OS/2 Programming (Microsoft
 Press 1989), pages 7, 8, 227-231;

 Exhibit D: Ed Iacobucci, OS/2 Programmer's Guide (Osborne
 McGraw-Hill 1988), pages 188, 189, 602-606;

 Exhibit E: Robert Lafore and Peter Norton, Peter Norton's Inside
 OS/2 (Brady Books 1988), pages 8, 23, 102-105, 134, 135;

 Exhibit F: Nguyen, Advanced Programmer's Guide to OS/2,
 pages 4-6, 11, 12;

 Exhibit G: Young, Programmer's Guide to OS/2, pages 178-180.

8. In Amendment E (Paper No. 9, filed December 21, 1992) (not

entered) to the 1990 application, Patent Owner stated that the "claims are

each directed to a system characterized by one or more of the following

well-defined terms of art: (1) 'multithreaded'; (2) 'concurrent';

(3) 'preemptive'; and (4) 'asynchronous'" (emphasis omitted) (page 18) and

 1 Because many of the titles refer to OS/2 and have similar sounding
names, we cite both the author and the title when referring to books.

Appeal 2007-2127
Reexamination Control No. 90/006,621

23

refers to the Fourth Affidavit of Applicant (Paper No. 8) to show "[t]he

definitions and significance of these terms" (page 18).

9. The Amended Brief to the Board (Paper No. 22, filed May 14, 1993)

in the 1990 application quotes from Exhibits B to G and states (page 8):

 The claims on appeal recite the terms "multithreading",

"concurrent", "asynchronous" and "preemptive". These terms are
used by appellant in the sense generally understood in the art.
Therefore an understanding of the meanings of these terms is essential
to a determination of the patentability of the claims on appeal. These
meanings are defined and explained in the excerpts from standard
treatises quoted in Exhibits B to G attached and referred to in
Paragraphs 38-51 of the FOURTH AFFIDAVIT OF APPLICANT.

10. Applicant's Fifth Affidavit (Paper No. 26, filed July 9, 1993) in the

1990 application states (page 3): "The system recited in the appealed claims

has a structure and mode of operation properly characterized as 'preemptive

multithreading', using the ordinary accepted meaning of this phrase shown

by the usage and definitions in the treatise pages reproduced as Exhibits B

to G of the Fourth Affidavit of Applicant."

11. Amendment H (Paper No. 27, filed July 9, 1993) (not entered) and

Amendment I (Paper No. 32, filed August 23, 1993) in the 1990 application

state that "'multithreading' is a type of 'multitasking' but is more specific in

that the threads or processes are in the same single program" (page 8) and

refer to the Microsoft Press Computer Dictionary for definitions of

"multitasking" and "multithreading."

Appeal 2007-2127
Reexamination Control No. 90/006,621

24

12. Amendment K (part of Paper No. 36, filed October 12, 1993) (not

entered) in the 1990 application states (page 6):

 THERE IS NO "APPLICANT'S DEFINITION" DISTINCT FROM
 THE ORDINARY GENERALLY UNDERSTOOD MEANING
 EXPLAINED IN THE TREATISE QUOTATIONS

 It is respectfully submitted that there is no 'applicant's

definition' of multithreading which is distinct from the ordinary
generally understood meaning to those skilled in the art. Applicant
merely adopted the term with this ordinary meaning. As stated on
Page 8 of the Amended Brief for Appellant:

 The claims on appeal recite the terms "multithreading",

"concurrent", "asynchronous" and "preemptive". These terms
are used by appellant in the sense generally understood in
the art. Therefore an understanding of the meanings of these
terms is essential to a determination of the patentability of the
claims on appeal. These meanings are defined and explained
in the excerpts from standard treatises quoted in Exhibits B
to G attached and referred to in Paragraphs 38-51 of the
FOURTH AFFIDAVIT OF APPLICANT. . . . [Emphasis by
Patent Owner.]

13. Appellant's Affidavit in Reply to Newly Cited References

(Paper No. 36½, filed November 15, 1993) in the 1990 application states

that "[t]he distinction and differences between a 'process' and a 'thread', and

between multiple 'processes' and 'multithreading', are well known in the art,

as shown by the following document quotations from authoritative treatises"

(page 4) and refers to the following books: Nguyen, Advanced

Programmer's Guide to OS/2; Microsoft Operating System/2 Programmer's

Reference, Volume 1, (Microsoft Corp. 1989); Custer, Inside Windows NT;

Young, Programmer's Guide to OS/2; Myers et al., Mastering Windows NT

Appeal 2007-2127
Reexamination Control No. 90/006,621

25

Programming (Sybex 1993); Duncan, Advanced OS/2 Programming;

Iacobucci, OS/2 Programmer's Guide; LaFore, Peter Norton's Inside OS/2;

Richter, Advanced Windows NT (Microsoft Press 1994); and Herbert Schildt,

Windows NT Programming Handbook (Osborne McGraw-Hill 1993).

14. The 1994 application, as filed, describes "multithreading" in the

abstract and the specification (now at col. 1, line 16 to col. 2, line 18 in the

'604 patent).

 Analysis

 1. Terms stated to have ordinary meanings in the art

 None of the 1982, 1985, or 1990 applications, as filed, mention

"threads" or "multithreading" (Finding 1). Thus, these applications provide

no intrinsic evidence of the meaning of the terms as of their filing dates.

 During the prosecution of the 1990 application, Patent Owner

gradually amended the specification and claims to recite "threads" and

"multithreading." These amendments are not part of the original disclosure

(Finding 2). Patent Owner consistently represented that the terms "threads"

and "multithreading" have their ordinary and customary meanings in the

computer art, citing to dictionaries and treatises (Findings 5-13). Thus,

Patent Owner expressly admitted that "threads" and "multithreading" have

their ordinary meaning in the art and that he was not acting as his own

lexicographer in providing special definitions of the terms. This is

consistent with the rule that the meaning of terms is determined as of the

filing date, see Phillips v. AWH, 415 F.3d at 1313, 75 USPQ2d at 1326 ("the

ordinary and customary meaning of a claim term is the meaning that the

term would have to a person of ordinary skill in the art in question at the

Appeal 2007-2127
Reexamination Control No. 90/006,621

26

time of the invention, i.e., as of the effective filing date of the patent

application"). The relevant filing date is the filing date of the 1990

application in which the term "multithreading" was introduced since Patent

Owner has not shown that the term had a recognized meaning in the art at

the time of the 1982 and 1985 applications.

 By referring to extrinsic sources for definitions, Patent Owner brought

extrinsic evidence of the meanings within the realm of prosecution history

intrinsic evidence. See Reiffin v. Microsoft, 64 USPQ2d at 1116

("Dictionaries and technical treatises are generally considered sources of

extrinsic evidence. Plaintiff, however, repeatedly quoted dictionary and

treatise definitions of thread to the patent office in an attempt to distinguish

his invention from prior art, bringing these definitions within the realm of

intrinsic evidence." (Citation omitted.)). "Multithreading" is defined in the

1994 application "in its ordinary generally understood sense" ('604 patent,

col. 1, lines 27-28). Thus, it is proper to refer to dictionaries and treatises for

conventional definitions of "threads" and "multithreading."

 If Patent Owner is mistaken in his understanding that his invention

can be claimed as "multithreading," as that term is defined in the art, he

should not be permitted to redefine the term to limit it to a disclosed

embodiment by giving it a definition inconsistent with the accepted meaning

in the art. It is true that for an issued patent, "[a] patent claim should be

construed to encompass at least one disclosed embodiment in the written

description portion of the patent specification." Johns Hopkins Univ. v.

CellPro, Inc., 152 F.3d 1342, 1355, 47 USPQ2d 1705, 1714 (Fed. Cir.

1998). However, "[d]uring patent examination the pending claims must be

interpreted as broadly as their terms reasonably allow. When the applicant

Appeal 2007-2127
Reexamination Control No. 90/006,621

27

states the meaning that the claim terms are intended to have, the claims are

examined with that meaning, in order to achieve a complete exploration of

the applicant's invention and its relation to the prior art." In re Zletz,

893 F.2d 319, 321, 13 USPQ2d 1320, 1322 (Fed. Cir. 1989). Claims in a

reexamination proceeding are given their broadest reasonable interpretation

consistent with the specification. See In re Yamamoto, 740 F.2d 1569, 1571,

222 USPQ 934, 936 (Fed. Cir. 1984). The claims are examined with the

meanings asserted by Patent Owner during prosecution of the '603 patent

and in the disclosure of the '604 patent. Patent Owner, having repeatedly

stated that the terms "threads" and "multithreading" have their ordinary and

customary meanings in the art, may not now contradict the record that he

created. See Southwall Technologies, Inc. v. Cardinal IG Co.,

54 F.3d 1570, 1578, 34 USPQ2d 1673, 1678 (Fed. Cir. 1995) ("A patentee

may not proffer an interpretation for the purposes of litigation that would

alter the indisputable public record consisting of the claims, the specification

and the prosecution history, and treat the claims as a 'nose of wax .'").

 2. Background explanation of "multithreading"

 "Multithreading" is an advanced operating system feature and some

background explanation will be helpful in understanding the issues on

appeal. The references cited were all published before the filing date of the

1994 application (when "multithreading" first appeared in an application as

filed) and many of the books were cited by Patent Owner during prosecution

of the '603 patent (e.g., Findings 6, 7, and 13)

Appeal 2007-2127
Reexamination Control No. 90/006,621

28

 a. Operating system

 "An operating system is a program that acts as intermediary between a

user of a computer and the computer hardware." Abraham Silberschatz and

Peter B. Galvin, Operating System Concepts (4th ed., Addison-Wesley Publ.

Co. Feb. 1994), page 3. The computer system environment is:

 An operating system is an important part of almost every computer

system. A computer system can roughly be divided into four
components: the hardware, the operating system, the applications
programs, and the users

 The hardware — the central processing unit (CPU), memory,

and input/output (I/O) devices — provides the basic computing
resources. The applications programs — such as compilers, database
systems, games, and business programs — define the ways in which
these resources are used to solve the computing problems of the
users. . . . The operating system controls and coordinates the use of
the hardware among the various applications programs for the various
users.

Id. at 3-4. A primary goal of an operating system is convenience for the user

and a secondary goal is efficient operation of the computer system. Id. at 5.

 b. Program

 A computer program is a sequence of instructions suitable for

processing by the CPU (also called a processor) of a computer. Computer

programs can be written in a high-level human readable programming

language called source code, which is compiled by a compiler program to

generate machine-readable object (machine) code (i.e., ones and zeros)

required for execution by the CPU. Normally, the whole program is written

in source code and then compiled by a compiler program into executable

Appeal 2007-2127
Reexamination Control No. 90/006,621

29

object code. The disclosed invention relates to an incremental compiler

where each line of source code is compiled into object code as it is entered.

 c. Process

 A process is defined as a program in execution. A program by itself

is not a process; a program is a passive entity, such as the contents of a file

stored on disk, whereas a process is an active entity, having the executable

code and a set of resources allocated by the operating system, such as

memory, file handles (a handle is an integer referring to an object), device

handles, etc. See Lafore, Peter Norton's Inside OS/2, page 12 ("A program

. . . is nothing more than the executable code, which may reside in memory,

on a hard disk, or even on a floppy locked away in a drawer. A process, on

the other hand, in an instance of a program actually being executed. The

process is the executable code, plus the resources the process is using, such

as memory, files, and I/O devices.").

 d. Thread

 "Within each process it is also possible to define entities known as

threads. A thread is like a subroutine within a program which executes

concurrently, or asynchronously, with other subroutines." Nguyen,

Advanced Programmer's Guide to OS/2, page 6. The attributes of threads in

a preemptive multithreading environment will be discussed infra.

 e. Operating System/2 (OS/2)

 Operating System/2 (OS/2) was jointly developed by the Microsoft

and IBM Corporations as a successor to MS-DOS and was released in the

1987-1988 time frame. See Charles Petzold, Programming the OS/2

Appeal 2007-2127
Reexamination Control No. 90/006,621

30

Presentation Manager (Microsoft Press 1989), pages 4-5. OS/2 was the first

widespread commercial operating system to allow a process to have multiple

threads. "Until the latter half of the 1980s, most operating systems allowed

a process to have only one thread of execution. (In fact, most operating

systems used the term process to refer to an executable entity. Thread is a

relatively new term.)" Custer, Inside Windows NT, page 92. "One of the

fundamental differences among the operating system environments available

on Windows NT is their ability to support multithreaded processes. Win32

and OS/2, for example, allow multiple threads per process, whereas POSIX,

MS-DOS, and the Windows 16-bit environments do not." Id. at 106. OS/2

existed in the time period before the 1990 application.

 f. Multitasking

 Multitasking is concurrent execution of two or more tasks. "The

terms task and process are used interchangeably to describe the direct result

of executing a binary (.EXE) file. . . . [U]nder MS-DOS all programs and

applications consist of a single process. OS/2 uses the terms task and

process because a single application program under OS/2 may consist of

more than one process." Letwin, Inside OS/2, page 44. OS/2 provides for

multitasking of processes and threads. See LaFore, Peter Norton's Inside

OS/2, page 11 ("different processes can run at the same time, and different

threads can run at the same time").

Appeal 2007-2127
Reexamination Control No. 90/006,621

31

 g. Concurrent execution

 "Concurrent" and "concurrent execution" are defined in the Microsoft

Press Computer Dictionary:

 concurrent A term applied to a computer operation in which two or

more processes (programs) have access to the microprocessor's
time and are therefore carried out more or less at the same time.
Because a microprocessor can work with much smaller units of
time than people can perceive, concurrent processes appear to be
occurring simultaneously but in reality are not.

 concurrent execution Also called parallel execution. The apparently

simultaneous execution of two or more routines or programs.
Concurrent execution can be accomplished on a single processor
by using time-sharing techniques such as dividing programs into
different tasks or threads of execution, or by using multiple
processors.

 Although "concurrent" is defined as "running parallel" or "operating

or occurring at the same time," Webster's New Collegiate Dictionary

(G. & C. Merriam Co. 1977), "at the same time" does not require at "exactly

the same time" in the computer art. See LaFore, Peter Norton's Inside OS/2,

page 8 (describing a time-sharing system with several users):

 Notice that when we speak of two programs running at the same time

in a time-sharing system we don't really mean at exactly the same
time, since the CPU allots a time slice to only one user at a given
time. To the users it appears that many programs are running at the
same time (concurrently), but in reality the CPU runs user A's
program for a few milliseconds, then user B's program, and so on for
several or a dozen users. It then returns to give user A another time
slice. It is only the rapidity of this round-robin switching of CPU time
that provides the illusion of concurrency to the users.

Appeal 2007-2127
Reexamination Control No. 90/006,621

32

 A good definition of "concurrent" is found in Jean Bacon, Concurrent

systems: An integrated approach to operating systems (Addison-Wesley

Publ. Co. 1993), page 1:

 Concurrent means 'at the same time'. . . . A concurrent system must

handle separate activities which are in progress at the same time. To
be a little more precise, we shall consider two activities to be
concurrent if, at a given time, each is at some point between its
starting point and finishing point. [Emphasis added.]

 h. Multitasking in a single processor system

 Concurrent execution of tasks (processes or threads) may be

implemented in two different ways. If there is a processor for each task, the

tasks may in fact be executing at the exact same time for true parallel

execution. If there is only one processor, the tasks must be switched back

and forth, which is called task or context switching, as described in Nguyen,

Advanced Programmer's Guide to OS/2, pages 9-10:

 Task switching is the way in which multitasking is

implemented in a single processor system. The operating system
switches between the executing programs very quickly, distributing a
certain number of processor cycles to each. This is not the same thing
as true multiprocessing where each program would have its own
central processing unit. Nonetheless, multitasking by sharing the
resources of a single processor among several processes, each made
up of multiple concurrent threads, does possess great advantages over
executing programs sequentially.

Appeal 2007-2127
Reexamination Control No. 90/006,621

33

 i. Task or context switching

 Task or context switching is described in Nguyen, Advanced

Programmer's Guide to OS/2, pages 10-11:

 The implementation of multitasking requires that the operating system

switch rapidly between executing programs or threads. . . . Switching
between programs or threads when implementing multitasking is
called task or context switching.

 In order to understand task switching one has to be able to

imagine what goes on within the CPU when a program or thread is
executing. As a program executes, the contents of the registers in the
machine are constantly changing in response to the instructions which
the program issues. If one could take a "snapshot" of all the CPU
registers one would have a perfect representation of the state of a
program at any given moment. This includes all the segment
registers, the stack registers and the LDTR [Local Descriptor Table
Register]. In order to switch among multiple programs OS/2 saves a
"picture" of the CPU in memory every time it interrupts the execution
of a program or thread to execute another one. Switching to the next
task to be executed entails loading its "picture" from memory into the
CPU and continuing to execute it from the point at which it was
interrupted.

Appeal 2007-2127
Reexamination Control No. 90/006,621

34

 The action of switching a task to the running state (loading it

into the CPU) is called dispatching. OS/2 dispatches tasks on the
basis of the thread. When OS/2 switches between threads in the same
process, the contents of the LDT register do not change. When OS/2
dispatches a thread in a process different from the one which was
interrupted, the contents of the LDT register are changed.

 The thread context information includes at least the contents of

thread's stack and register set, including the program counter. See Lafore,

Peter Norton's Inside OS/2, page 139 ("Only two things (besides ID

numbers) distinguish one thread from another. Each thread has its own stack

space, and each thread has its own set of virtual CPU registers, including the

program counter (which points to the address of the instruction currently

being executed). When a thread is executing, the contents of its virtual

registers are loaded into the real CPU registers. When the thread is not

executing, the contents of the registers are saved, to be restored the next time

the thread is run."); Iacobucci, OS/2 Programmer's Guide, page 106-107

("The thread provides program code with an execution environment that

consists of the register values, stack, and the CPU mode. The execution

environment is collectively referred to as the thread's context."); Petzold,

Programming the OS/2 Presentation Manager, page 786 ("All threads

within a process share the process's resources (such as open files and

memory blocks), but each thread has its own stack and its own set of CPU

registers, including the instruction pointer.").

 Because threads do not own resources except for a stack and a copy of

the registers, context switching between threads in the same process can be

faster than context switching between processes.

Appeal 2007-2127
Reexamination Control No. 90/006,621

35

 j. Thread scheduling and dispatching

 Threads are scheduled for execution by the operating system

scheduler, which distributes processor cycles to all active threads according

to some scheduling scheme, and threads are dispatched by the dispatcher,

which institutes the thread context switch to save the state of the running

thread and load the saved state for the new thread. The scheduler,

dispatcher, and preemptive scheduling scheme are described in Nguyen,

Advanced Programmer's Guide to OS/2, page 11:

 All the threads that are active within the system at any time

form a pool from which the operating system dispatches threads one
at a time, in a round-robin fashion. A dispatched thread temporarily
has the CPU all to itself. Thread dispatching is performed by a
module of the operating system called the Dispatcher/Scheduler. The
Dispatcher institutes the task switch necessary to execute the next
thread, while the Scheduler distributes processor cycles to all the
active threads within the system.

 Notice that we have been speaking of active threads and

dispatched threads. These are not the same thing. At any given time
within the system there will be a number of active threads, but only
one dispatched thread. In fact it is more proper to speak of the active
threads within the system as the set of ready threads, and the
dispatched thread as the running thread. A third state in which a
thread can be found is the waiting state. A waiting thread is one
which is waiting for an external event (such as the completion of an
I/O operation). When the external event occurs (when the I/O
operation has been completed) the operating system places the waiting
thread back into the pool of ready threads. See figure 1.3 for the state
diagram for a thread.

Appeal 2007-2127
Reexamination Control No. 90/006,621

36

 There are two ways in which a running thread gives up control

of the CPU. It can give up control of the CPU voluntarily, for
example when it finishes executing, or while waiting for the return of
a function call or the completion of a device I/O request. It would not
be wise, however, to design an operating system under the
presumption that all the active threads within the operating system
will cooperate among themselves to share processor cycles equally.
OS/2 will automatically preempt a running thread after a certain
number of clock cycles has passed (this value is called the time slice),
and go on to execute another. This makes OS/2 a preemptive
scheduling system.

 OS/2 utilized both "priority" and "timesliced" preemptive scheduling

in 1988 as described in Young, Programmer's Guide to OS/2, page 180:

 Specifically, a thread is preempted when either of the following

events occurs:

 ♦ Another thread, which has a higher priority, becomes ready to

run. (This can occur, for example, if a system call or hardware
interrupt routine frees some resource for which the higher-
priority thread has been waiting.)

 ♦ The thread's time slice expires. The system receives control

with each clock-tick interrupt, which gives the scheduler

Appeal 2007-2127
Reexamination Control No. 90/006,621

37

frequent opportunities to check the status of all threads. If the
time slice of the current thread is exhausted and if another
thread of equal (or higher) priority is ready to run, the current
thread is preempted; otherwise it is allowed to continue running.

 k. Multithreading

 Multithreading is the concurrent execution of two or more threads in

the same program. As described in Custer, Inside Windows NT, page 94:

 [T]here are times when a different approach to concurrency is

beneficial—namely, multithreaded processes. As stated previously,
the term thread refers to the movement of a processor through a
program's instructions; each thread represents a separate program
counter. A multithreaded process has two or more threads (and
program counters) within a single process, sharing the same address
space, object handles, and other resources.

 Concurrent execution of threads in the same program means that, at a

given time, two or more threads in the same program are each executing at

some point between their starting and finishing points. This is consistent

with the '604 patent's description of multithreading: "The threads may thus

execute incrementally and piecewise with their successive task portions

executed alternately in a mutually interleaved relation and with each thread

executed during its respective series of spaced timeslices interleaved with

the timeslices of at least one other thread" ('604 patent, col. 1, lines 48-53).

The point in the program that each thread is executing is indicated by that

thread's program counter, which is part of the thread's context.

Appeal 2007-2127
Reexamination Control No. 90/006,621

38

 Multithreading, concurrent execution of multiple threads, is described

in Young, Programmer's Guide to OS/2, page 19:

 [A] single process can consist of multiple concurrent threads. A

thread is simply the execution of a series of instructions in a program.
Processor time is divided among all active threads. Thus, several
sections of a single program can run simultaneously. For example, a
spreadsheet program could have one thread reading date from the
user, another thread performing a recalculation, a third thread
updating a display of the time and keyboard status, and so on.
Figure 1.6 illustrates the structure of a protected mode process. Note
that the process begins with the execution of a single thread. Any
thread can start additional threads, and the process terminates when
the last thread stops running.

 The vertical dimension of Figure 1.6 represents time. At a given time,

when two or more threads are each executing at some point between its

starting and finishing point (shown by the arrow) they are said to be

"concurrently executing"; note that at one period in time, all four threads are

concurrently executing. Note that threads can start and finish anytime

during the execution of the main Thread 1.

Appeal 2007-2127
Reexamination Control No. 90/006,621

39

 l. Multithreaded versus sequential programs

 A sequential or linear program has a single thread of execution that

executes instructions from the start to the finish with no simultaneity or

overlap among instructions (no concurrency); there is only one program

counter that traces the path of execution of instructions through the program.

By contrast, the defining characteristic of multithreading is that multiple

threads execute instructions concurrently, i.e., more than one thread is

executing at the same time, and each thread may be executing instructions in

a different part of the program, as indicated by its individual program

counter. If there was a processor available for each thread, all threads could

run simultaneously at exactly the same time, but, for a machine with one

processor, the threads must take turns running their tasks a little at a time.

As stated in LaFore, Peter Norton's Inside OS/2, page 134:

 A computer program, when it is running, executes a sequence of

instructions which are stored in the computer's memory. This
activity—executing a sequence of stored instructions—is called a
thread, or sometimes a thread of execution. Think of an instruction
pointer that points to the next instruction to be executed. Generally
the instruction pointer moves forward through memory, pointing to
each instruction in sequence, but sometimes it jumps to a different
part of memory (to accommodate loops, function calls, and other
non-sequential activities). This instruction pointer tracks the activity
of a particular thread.

 When a process is started it begins executing a single

thread. . . . However, . . . a thread can create a new thread. Both
threads can then run at the same time. What does this mean? Again,
imagine that each thread has its own instruction pointer, showing
where it is in the instruction sequence in memory. The scheduler lets
one instruction pointer move through memory for a while, then the

Appeal 2007-2127
Reexamination Control No. 90/006,621

40

other. These time slices are very short, making the two threads appear
to run simultaneously.

 The difference between sequential and concurrent (multithreaded)

programs is illustrated by Figure 1.1 in Advanced Programmer's Guide to

OS/2, page 5:

Note that the instructions execute sequentially in sequential program on the

left, but execute concurrently (in parallel) in a multithreaded program. This

difference is described in LaFore, Peter Norton's Inside OS/2, page 136:

 When a program calls a function, control is transferred from the

calling program to the function; the calling program then stops
running until the function returns control to it. Starting a thread on the
other hand, creates another, different thread of control: both the
calling program and the thread it creates continue to run.

 Another illustration of multithreading (concurrent execution of

multiple threads), multitasking of processes (concurrent execution of

Appeal 2007-2127
Reexamination Control No. 90/006,621

41

multiple processes), and how threads are dispatched is illustrated in LaFore,

Peter Norton's Inside OS/2, pages 138-39:

 Threads are referred to as the "unit of dispatchability." This means

the scheduler allots CPU time to threads, not processes. Each thread
gets its share of time before control is passed to the next thread. Thus,
a process with more threads will get more CPU time, as shown in
Figure 5-2.

 Process 1 and Process 2 are each "multithreaded" because they have

two or more threads in the same process executing at the same time but for

the timesharing of the CPU. Also, since two processes execute at the same

time, but for the timesharing of the CPU, this is multitasking of processes.

 m. Advantages of multithreading

 There are numerous advantages to multitasking and multithreading.

As stated in Harvey M. Deitel, An Introduction to Operating Systems (2d ed.

Addison-Wesley Feb. 1990), page 791:

 Programmers in an OS/2 environment use threads for a variety

of reasons. A common application is to provide one thread for

Appeal 2007-2127
Reexamination Control No. 90/006,621

42

foreground work, which controls interaction with the user, and
another thread to control background work, which performs the bulk
of the work in support of the user's application.

 Nguyen, Advanced Programmer's Guide to OS/2, published in 1989,

discloses (page 9):

 The next advantage of multitasking lies in the way in which the

end user's relationship to the computer changes. All of us are familiar
with the frustration of waiting for our word processor to check the
spelling of a document, or for the computer to re-index a large
database, or re-calculate a spreadsheet. During these times we cannot
continue to work. In a multitasking system the user can continue to
add text to his or her document, while the spelling of each word is
checked automatically as it is entered.

Nguyen also discloses (page 25):

 Having multiple sections of code execute asynchronously (at

the same time) greatly increases the speed of applications when these
sections implement a group of logically independent functions. For
example, the editing, printing, and spell-checking functions of a word
processor are completely independent of one another. There is no
logical reason why a user should not continue to edit his document
while running a spell-check, using the printing facility, managing the
files on his drive, or even formatting a disk.

 n. Creating threads

 A process consists of at least one thread. A "multithreaded" process

has multiple threads, which execute concurrently. Additional threads in the

same process have to be created by special instructions, which are used by

the operating system. See Deitel, An Introduction to Operating Systems,

page 790 ("A process's first thread is created automatically by OS/2 when

the process is created; additional threads are created with the

Appeal 2007-2127
Reexamination Control No. 90/006,621

43

DosCreateThread call."); Petzold, Programming the OS/2 Presentation

Manager, page 786 ("A process running under OS/2 consists of one or more

threads of execution. Each thread has a thread ID number that uniquely

identifies the thread within the process. The thread that begins execution in

the process always has an ID number of 1. A thread can create additional

threads in the process by a call to DosCreateThread."). The special

instruction is the mechanism the program uses to inform the operating

system to create the necessary data structures for another thread.

 o. Asynchronous execution of threads

 "Threads execute independently of one another; they are said to be

asynchronous, meaning that they run simultaneously but without timing

relationships. (That is, when a thread is executing a particular instruction, it

cannot be predicted what instruction any other thread is currently

executing.)" Young, Programmer's Guide to OS/2, page 178. It is possible

to make threads execute synchronously using special instructions.

 p. A simple multithreading example

 The following is a simple example of a multithreading program from

LaFore, Peter Norton's Inside OS/2, page 135. The first thread starts another

using the DosCreateThread function (annotations at the right have been

added). The first thread then prints a series of Xs during its timeslice, while

the second thread prints a series of dashes during its timeslice.

Appeal 2007-2127
Reexamination Control No. 90/006,621

44

 The first and second threads are executing at the same time (with

alternating timeslices), with each thread executing in a different part of the

same program. The output of the program is shown below, id. at 136:

Appeal 2007-2127
Reexamination Control No. 90/006,621

45

 3. '604 patent's definition of "multithreading"

 The 1994 application was the first of Patent Owner's four applications

to define "multithreading" in the original application:

 The term "multithreading" is used in this specification in its ordinary

generally understood sense to mean the concurrent asynchronous
preemptive time-sliced execution of a plurality of threads of
instructions located within the same software program, controlled by
a clock or timer which periodically activates the interrupt operation of
the central processor. That is, each interrupt preempts an executing
thread after the thread has executed at most for a brief timeslice
during which the thread may have performed only a portion of its
task. Control of the processor is thereby taken away from the
preempted thread, and control then passes to an interrupt service
routine which then passes control to another thread to invoke the latter
for execution during the next timeslice. Control is thereafter returned
to the preempted thread to enable the latter to resume execution at the
point where it was previously interrupted. The term "multithreading"
in each claim is to be understood as defined by the respective
limitations reeked [sic, recited] in that particular claim.

 The operation termed "multithreading" provides that control of

the processor is thus transferred repeatedly back and forth between the
threads so rapidly that the threads are run substantially
simultaneously. The threads may thus execute incrementally and
piecewise with their successive task portions executed alternately in a
mutually interleaved relation and with each thread executed during its
respective series of spaced timeslices interleaved with the timeslices
of at least one other thread. [Emphasis added.]

Now at '604 patent, column 1, lines 27-53. This definition is consistent with

the ordinary meaning in the art as of the 1994 filing date.

Appeal 2007-2127
Reexamination Control No. 90/006,621

46

 The 1994 application does not define "threads." The district court

construed "thread" as follows:

 "A thread is the execution of a sequence of instructions constituting

one of the possibly many procedures, functions or subroutines within
the program. Further, when interrupted, a thread's context must be
saved and retrievable when a thread is reassigned control of the CPU
and resumes execution."

Reiffin v. Microsoft, 270 F. Supp. 2d at 1138. This definition comes from

Patent Owner's arguments during prosecution of the '603 patent. See Reiffin

v. Microsoft, 64 USPQ2d at 1115. This definition is consistent with the

meaning in the art that multithreading on a single processor computer

requires threads to be switched back and forth, which requires saving and

restoring the thread's context.

 The fundamental characteristics of "multithreading," as defined in the

'604 patent, are discussed below. Although "multithreading" has other

attributes, (e.g., the specific items in the thread's context, threads are created

by a program instruction, threads are scheduled by the operating system,

etc.), this analysis relies on the definition provided by Patent Owner.

 (1) "concurrent . . . execution of a plurality of threads of

instructions located within the same software program"

 Concurrent execution means that two or more threads within the same

program are executing at some point between their starting and finishing

points at the same time—this is one of the advantages of multithreaded

programs. If there is a processor for each thread, all threads can run

simultaneously (at exactly the same time), but if there is only one processor,

the threads take turns executing incremental parts of their respective

Appeal 2007-2127
Reexamination Control No. 90/006,621

47

subtasks in different parts of the program. Each thread maintains its own

program counter which indicates its place in the program so, for example,

one thread can be executing in instruction range 001-500 and another thread

can be executing in instruction range 501-1000. Where two sets of

instructions are incapable of running at the same time, assuming they each

have their own processor, there can be no concurrent execution.

 A normal hardware interrupt is a good example of non-concurrent

execution. When an interrupt occurs, the main program stops executing and

it does not start running again until the interrupt service routine has

completely finished its operation. Since it is impossible for the main

program to execute while the interrupt service routine is executing, there is

no concurrent execution of two sets of instructions. This is sequential

operation. By contrast, although a multithreading operating system also uses

an interrupt, the operating system is specially designed to switch back and

forth between threads by performing a thread context switch. Without a

specially designed operating system, multithreading is impossible.

 Importantly, the instructions must be in the same software program.

 (2) "asynchronous. . . execution of a plurality of threads of

instructions located within the same software program"

 Asynchronous simply means that the threads execute independently of

one another, meaning that they run simultaneously but without timing

relationships.

Appeal 2007-2127
Reexamination Control No. 90/006,621

48

 (3) "preemptive time-sliced execution of a plurality of threads of
instructions located within the same software program"

 Preemptive time-sliced execution of a plurality of threads is

interpreted to mean that a plurality of threads are subject to "preemptive

time-sliced execution"; i.e., a plurality of threads are preempted to execute

for a fixed timeslice. Since a plurality of threads are preempted, a plurality

of the threads must be "interruptible" (i.e., "capable of being interrupted" or

"capable of being preempted") when their timeslice of execution expires.

 "Interruptible" does not require that a thread is always interrupted,

e.g., a thread may finish its subtask before the end of the timeslice and return

control to the operating system and not be interrupted. Nevertheless, it must

be capable of being interrupted. The district court interpreted "thread" to

require a set of instructions that is capable of being interrupted and having

its context stored, and interpreted "multithreading" to require that at least

two threads are interruptible Reiffin v. Microsoft, 270 F. Supp. 2d at 1142.

The Examiner adopted the district court's reasoning (Final Rejection 73-74).

 One of ordinary skill in computer art would appreciate that all

executing threads in a preemptive multithreading system must be

"interruptible" when their timeslice is expired or "preemptive execution"

would be meaningless. This is consistent with the '604 patent, which states:

"That is, each interrupt preempts an executing thread after the thread has

executed at most for a brief timeslice during which the thread may have

performed only a portion of its task" (emphasis added) ('604 patent, col. 1,

lines 33-36). It is also consistent with claim 1: "preempting an executing

processing thread of said program in response to each actuation of said

interrupt operation so as to terminate the timeslice of execution of said

Appeal 2007-2127
Reexamination Control No. 90/006,621

49

executing thread," which requires that an executing thread is preempted in

response to an interrupt operation, not may be preempted.

 Patent Owner argues that "multithreading" does not require all threads

to be interruptible. While we disagree because such interpretation would be

inconsistent with "preemptive multithreading," even if that were true, the

'604 patent definition requires a plurality of threads to be interruptible.

 Patent Owner argues that "multithreading" only requires one thread to

be interrupted. This is clearly inconsistent with the '604 patent's definition,

which requires that a plurality of threads are preempted.

 (4) Thread

 Patent Owner' definition of "thread" requires that "when interrupted, a

thread's context must be saved and retrievable when a thread is reassigned

control of the CPU and resumes execution." This definition does not imply

that interruptibility is an optional attribute of threads; all threads must be

capable of being interrupted. Nor does the definition imply that means to

save a thread's context when it is interrupted is optional. The attributes of a

"thread" are that: (1) it can be interrupted; and (2) there must be a

mechanism for the system to save and restore the thread's context. Each

thread must have its own thread context. If a set of instructions does not

have a "context" that can be saved and restored, it is not a "thread."

Appeal 2007-2127
Reexamination Control No. 90/006,621

50

 4. Reexamination claims all recite "multithreading"

 All of the independent claims recite "multithreading" (or

"multithreaded") and, in one form or another, "concurrent asynchronous

preemptive time-sliced execution of a plurality of threads of instructions

located within the same software program," as in the '604 patent's definition

of "multithreading." For example, claim 1 recites a "method of preemptive

multithreaded operation of a computer . . . having an interrupt operation so

as to provide for execution of a program having a task comprising a plurality

of processing subtasks each performed concurrently . . . by a respective one

of a plurality of processing instruction threads of said program" and

"preempting an executing processing thread of said program in response to

each actuation of said interrupt operation so as to terminate the timeslice of

execution of said executing thread." "Asynchronous" is implied by the fact

that the executing thread can be preempted at the end of its timeslice without

regard to what another thread is doing.

 Although the issue of priority depends on written description support

for preemptive "multithreading," there are some other features of the claims

that should be mentioned in this claim interpretation section.

 Some of the claims specifically require that the threads alternate back

and forth to perform successive incremental portions of their respective

subtasks, which is a characteristic of true preemptive multithreading. This is

consistent with the '604 patent's description ('604 patent, col. 1, lines 45-53):

 The operation termed "multithreading" provides that control of

the processor is thus transferred repeatedly back and forth between the
threads so rapidly that the threads are run substantially
simultaneously. The threads may thus execute incrementally and
piecewise with their successive task portions executed alternately in a

Appeal 2007-2127
Reexamination Control No. 90/006,621

51

mutually interleaved relation and with each thread executed during its
respective series of spaced timeslices interleaved with the timeslices
of at least one other thread.

For example, independent claim 1 recites "preempting an executing

processing thread . . . after [it] has executed only a portion of its respective

subtask," passing control to another processing thread "to perform a next

successive portion of the respective subtask," with "the subtask portions of

one processing thread interleaved with the subtask portions of at least one

other processing thread." Independent claims 18 and 22 recite "each thread

executing successive incremental portions of its processing task . . . during

successive timeslices of a respective series of spaced timeslices." Claim 25,

which depends on claim 24, recites "the task of each thread is executed

piecewise with the successive task portions of each thread interleaved with

the successive executed task portions of at least one other thread." One

consequence of these limitations is that two threads must be interrupted after

finishing only a portion of their respective subtasks.

 Many of the claims recite preempting an executing thread in response

to each actuation of the interrupt operation. For example, claim 1 recites

"preempting an executing processing thread of said program in response to

each actuation of said interrupt operation." Claim 4 recites "interrupting the

execution of an executing processing thread . . . and preemptively taking

control of the microprocessor away from said executing instruction thread

in response to each said activation of said interrupt input"; claim 6 is

similar. Claim 18 recites an "interrupt service routine responsive to each

said clock actuation of the interrupt operation to preempt an executing

processing thread . . . so as to terminate its timeslice of execution"; claim 22

Appeal 2007-2127
Reexamination Control No. 90/006,621

52

is similar. Claim 24 recites "clock driven means for periodically activating

said interrupt input at brief predetermined time intervals so as to interrupt

the execution of an executing processing thread . . . upon each activation of

said interrupt input." Claim 26 recites "clock timer for periodically

activating said interrupt operation at brief predetermined time-sliced

intervals so as to interrupt the execution of an executing . . . thread . . . and

to take therefrom control of the central processor upon each activation of

said interrupt operation"; claim 75 is similar. Claim 69 recites "an interrupt

service routine for preemptively taking control of the microprocessor in

response to each activation of said interrupt input." Compare this to

claims 10, 14, and 17, which recite "means to repeatedly activate said

interrupt input so as to interrupt execution of said first thread"; i.e., they only

recite interrupting execution of a first thread (although they do not preclude

interrupting a plurality of threads). Therefore, most of the claims require

that an executing thread is interrupted upon each actuation of an interrupt—

if a thread cannot be interrupted, it would not meet the claim limitation.

 The claims do not recite preempting more than one thread, but cover

preempting all threads. For example, claim 1 recites "preempting an

executing processing thread . . . in response to each actuation of said

interrupt operation," "passing control to another processing thread," and

"thereafter returning control of the central processing unit to a previously

preempted thread." Claim 1 does not expressly recite preempting the

"another processing thread" to return control, as in normal multithreading,

nevertheless, it does not exclude it and Patent Owner interprets the claims to

read on conventional multithreading where each thread is interrupted.

Appeal 2007-2127
Reexamination Control No. 90/006,621

53

 5. Patent Owner's arguments are not persuasive

 Patent Owner's arguments have been considered, but do not change

our interpretation of the terms "threads" and "multithreading."

 a. Threads must be interruptible

 Patent Owner argues that there is no support for the Examiner's

definition of "multithreading" as requiring that all threads must be

interruptible (Br. 31) and argues that a thread does not have to be

interruptible. It is argued that Phillips v. AWH states that the specification

governs claim interpretation and the Examiner's interpretation is inconsistent

with the specification (Br. 32):

 Since original application described in detail the character insertion

routine of the editor, which completed its function substantially
simultaneously and therefore relinquished control of the CPU long
before the invocation of the next interrupt, and therefore this character
insertion routine was never interrupted, the Examiner's claim
construction of "thread" was clearly inconsistent with the original
applications. That is, a "thread" as used in the reexamination claims
was not required to be interruptible or interrupted.

 Patent Owner argued before the district court that the editor was

interruptible, Reiffin v. Microsoft, 270 F. Supp. 2d at 1142, but, having lost

there, now argues that interruptibility is not necessary.

 Patent Owner consistently stated that "threads" and "multithreading"

have their ordinary meanings in the art and that he did not intend the terms

to have a definition which is distinct from the ordinary generally understood

meanings to those skilled in the art as set forth in books and dictionaries

(Findings 5-13). The '604 patent provides a definition of "multithreading"

that is consistent with the ordinary meaning in the art. The terms "threads"

Appeal 2007-2127
Reexamination Control No. 90/006,621

54

and "multithreading" must be given their ordinary meanings in the art and

Phillips v. AWH does not require otherwise. The fact that Patent Owner is

mistaken in his understanding that the embodiment disclosed in the

specification can be described as "multithreading" does not justify giving

"threads" and "multithreading" non-standard definitions.

 "Interruptible" means "capable of being interrupted" or "capable of

being preempted." It does not mean that a thread is always interrupted. If a

thread finishes its subtask before the end of a timeslice, it is not interrupted.

However, an executing thread must be capable of being interrupted at the

end of a timeslice. Independent claims 1, 4, 6, 18, 22, 24, 26, 69, and 75 all

require preempting an executing thread in response to each actuation of the

interrupt operation, which can only happen if all threads are interruptible.

Independent claims 10, 14, and 17 only recite interrupting execution of a

first thread, but do not preclude interrupting execution of all threads, and

Patent Owner contends that these claims cover conventional preemptive

multithreading in which all threads are interruptible. Independent claims 1,

18, 22, and dependent claim 25 recite that the threads alternate and perform

successive incremental portions of their respective subtasks, which requires

that both threads are interrupted before finishing their subtasks.

 The definition of "multithreading" as "concurrent asynchronous

preemptive time-sliced execution of a plurality of threads of instructions

located within the same software program," expressly requires that at least a

plurality of threads are interruptible. Since there are only two possibilities

for threads in Patent Owner's invention, the compiler and editor, both (i.e.,

all) must be interruptible to meet the Patent Owner's definition. Moreover,

one of ordinary skill in the art would interpret "preemptive multithreading,"

Appeal 2007-2127
Reexamination Control No. 90/006,621

55

as that term is defined in the '604 patent and in the computer art, to require

that all program threads are interruptible at the end of their timeslice. There

is no support for Patent Owner's position that "preemptive multithreading"

only requires some program threads to be interruptible.

 b. Ligler and Reiffin declarations

 It is argued that the declaration by Patent Owner, Mr. Reiffin, and the

declarations by Dr. George T. Ligler establish that a person of ordinary skill

in the art would understand that "multithreading" does not require any thread

to be interrupted. We address each of the arguments separately.

 It is argued that one skilled in the art would understand "[t]hat the

clock-activated interrupt embodiment of the original 1982 application is an

example of 'multithreading' as that term is defined at column 1, lines 24-38

of the '603 patent (Ligler, Tab A, ¶¶ 33-35)" (Br. 32).

 Dr. Ligler's declaration of January 7, 2002, is based on a definition in

the '603 patent which states "with at least one thread invoked by a periodic

clock-activated interrupt service routine" (col. 1, lines 30-32), i.e., it only

requires one thread to be invoked by an interrupt, but does not preclude

more than one thread from being invoked by an interrupt. As experts do,

Dr. Ligler carefully confined his declaration narrowly to the definition of

"multithreading" in the '603 patent. He did not state whether he believed

that definition to be the ordinary definition in the art or whether the

disclosed embodiment would be considered "multithreading" as that term is

ordinarily defined in the art. In any case, however, the definition at issue is

the definition of "multithreading" in the '604 patent and in the art. Those

definitions require all (or at least a plurality of) threads to be interruptible.

Appeal 2007-2127
Reexamination Control No. 90/006,621

56

 It is argued that one skilled in the art would understand "[t]hat the

clock-activated embodiment of the 1982 application teaches '[f]or most

applications, clock interrupts at intervals of about every 10 to 30

milliseconds should be frequent enough to keep up with keys stroked at the

keyboard' (A0064) (Ligler, Tab A, ¶ 25)" (Br. 32) and "[t]hat the editor will

usually, if the time period between clock-activated interrupts is 10 to 30

milliseconds, have completed its processing before the next clock

interrupt (although the editor should indeed be interrupted if that

processing happens not to be complete) (Ligler, Tab A, ¶ 26)" (Br. 32).

 We assume these statements are correct. Importantly, as stated in

Dr. Ligler's second quotation, if the editor does not finish it must be capable

of being interrupted.

 It is argued the one skilled in the art would understand that: "every

timesliced multithreaded system must provide threads with the ability to

voluntarily relinquish control of the CPU before the end of the timeslice;

otherwise a thread that requires only one millisecond to complete its

immediate task would idle and waste CPU time for the remaining 29

milliseconds of each timeslice (Reiffin, ¶ 34)" (Br. 32-33); "allowing such

tasks to idle would make the system several orders of magnitude slower

when processing brief tasks such as inserting single characters into an editor

buffer; such a slow inefficient computer would be worthless (Reiffin, ¶ 34)"

(Br. 33); and, "as provided in Microsoft-published treatises, the solution to

this idling problem is the voluntary release of the unused remainder of a

timeslice (see, e.g., RAY DUNCAN, ADVANCED OS/2 PROGRAMMING

237, Microsoft Press (1989) (providing one alternative for an idle thread as

'simply to give up the remainder of its timeslice') (Ex. 6); C. HUGHES, T.

Appeal 2007-2127
Reexamination Control No. 90/006,621

57

HUGHES, OBJECT ORIENTED MULTITHREADING USING C++ 99,

110, Wiley Computer Publishing (1997) (Ex. 17) ('[Threads execute for

short intervals, then release control of the processor.'); MICROSOFT

COMPUTER DICTIONARY 303 (1999, Fourth Ed.) ('In [cooperative

multitasking], the operating system relies on the task to voluntarily cede

control to another task') (Ex. 19)) (Reiffin, ¶¶ 29-30)" (Br. 33).

 We agree that operating systems can provide for threads to voluntarily

release the unused remainder of a timeslice (although Patent Owner's

statement is based on descriptions of multithreading systems he had nothing

to do with). However, this evades the real issue, which is that a thread in a

"preemptive multithreading" system, as claimed, must be interruptible

(capable of being preempted) if it is still executing when its timeslice

expires. There is nothing inconsistent about a thread being interruptible, yet

relinquishing control if it finishes before the end of its timeslice. However,

it is inconsistent with the nature of "preemptive multithreading" for a thread

to not be capable of being preempted if the timeslice expires. The whole

point of preemptive multithreading is to let each thread run a fixed amount

of time and then preempting it to let another thread run.

 Mr. Reiffin's declaration contains misleading statements to the effect

that not all threads are interruptible by referring to "cooperative and selfish

threads" (Reiffin declaration, ¶¶ 31, 35). Cooperative or event-driven

multithreading is when each thread runs until it is finished or until some

event occurs which causes the thread to suspend execution, such as waiting

for I/O. In a "cooperative multithreading" system, the amount of time a

thread is allowed to run is determined by the thread, whereas in a

"preemptive multithreading" system, the time is determined by the timeslice

Appeal 2007-2127
Reexamination Control No. 90/006,621

58

of the operating system. Since the claims are all directed to "preemptive

multithreading," "cooperative multithreading" is not relevant.

 It is argued that one skilled in the art would understand "[t]hat all

major multithreading operating systems implement 'threads' that may

voluntarily relinquish control of the CPU instead of being interrupted or

preempted including IBM's OS/2 operating system, Microsoft's Windows

NT, Windows 95, Windows 98, Windows 2000 and Windows XP, and Sun

Microsystems' Solaris and Java systems (Reiffin, ¶ 32)" (Br. 33).

 Again, these arguments are misleading. The fact that a thread can

voluntarily relinquish control if it finishes before the end of its timeslice, i.e.,

before it is interrupted, is irrelevant to the issue of whether a thread has to be

capable of being preempted if it is still executing at the end of its timeslice.

"Preemptive multithreading" requires that all threads are interruptible when

the timeslice expires. To the extent Mr. Reiffin relies on "cooperative

multithreading," such as Solaris, this is not what is claimed.

 For the reasons stated above, the argued portions of the Ligler and

Reiffin declarations do not persuade us that threads in a "preemptive

multithreading" system do not have to be interruptible.

 c. More that one thread must be interrupted

 Patent Owner argues that "multithreading" only requires one thread to

be interrupted (Br. 34-36). It is argued that "multithreading" is defined in

the '603 patent as follows ('603 patent, col. 1, lines 24-38):

 The term "multithreading" is used in this application in its

ordinary generally understood sense to mean the concurrent time-
sliced preemptive execution of a plurality of threads of instructions
located within the same single operator-selected application program,

Appeal 2007-2127
Reexamination Control No. 90/006,621

59

whereby during execution of the program each thread may have at
various times direct access to the same program address space, and
with at least one thread invoked by a periodic clock-activated
interrupt service routine which upon each activation asynchronously
and preemptively takes control of the central processing means away
from an executing thread at a repetition rate sufficiently fast so that
even where the system contains only a single central processor the
concurrent threads appear to execute effectively simultaneously and
are so perceived by the user. [Emphasis added.]

Therefore, Patent Owner argues, he "specifically defined 'multithreading' to

state that 'at least one thread [is] invoked by a periodic clock-activated

interrupt service,'" (Br. 35) and "[n]othing in this definition, or elsewhere in

the specification, claims, or prosecution history, requires more than one

thread to be interrupted" (Br. 35).

 The issue is how the terms "threads" and "multithreading" are defined

in the '604 patent, not in the '603 patent. The '604 patent requires that at

least a plurality of threads in a "preemptive multithreading" system are

interruptible. The definition of "multithreading" in the '603 patent was

added by amendment after its filing date and is not intrinsic evidence of

what the term meant as of the 1990 filing date. See Phillips v. AWH,

415 F.3d at 1313, 75 USPQ2d at 1326 ("We have made it clear, moreover,

that the ordinary and customary meaning of a claim term is the meaning that

the term would have to a person of ordinary skill in the art in question at the

time of the invention, i.e., as of the effective filing date of the patent

application."). Patent Owner stated numerous times during the prosecution

of the 1990 application that the terms "threads" and "multithreading" were

intended to have their ordinary meaning in the art. To the extent the

Appeal 2007-2127
Reexamination Control No. 90/006,621

60

definition in the '603 patent is inconsistent with the definition in the '604

patent and the meaning in the art, it is not entitled to any weight.

 Moreover, Patent Owner is incorrect in stating that the claims do not

require more than one thread to be interrupted. Independent claims 1, 4, 6,

18, 22, 24, 26, 69, and 75 all require preempting an executing thread in

response to each actuation of the interrupt operation, which can only happen

if all threads are interruptible. That is, if a thread is executing when its

timeslice expires, these claims require that it must be preempted.

Independent claims 10, 14, and 17 only recite interrupting execution of a

first thread, but do not preclude interrupting execution of all threads and

Patent Owner considers these claims to read on conventional multithreading.

Independent claims 1, 18, 22, and dependent claim 25 specifically recite that

the threads alternate and perform successive incremental portions of their

respective subtasks, which necessarily requires that both threads are

interrupted before finishing their subtasks; a thread that is not finished with

its subtask would not voluntarily relinquish any part of its timeslice.

 Patent Owner argues that the Examiner erred in construing

"preemptive execution of a plurality of threads" in the quotation above from

the '603 patent as requiring the system to "be preemptive for all threads,"

because this reads a limitation into that phrase that is not there (Br. 36). It is

argued that "preemptive" is an adjective modifying "execution" and "[a]s

long as preemption occurs during the execution of the 'application program',

'preemptive execution' occurs, whether or not each and every thread of the

program is preempted" (Br. 36).

 The phrase "the concurrent time-sliced preemptive execution of a

plurality of threads of instructions" requires more than "preemptive

Appeal 2007-2127
Reexamination Control No. 90/006,621

61

execution," as argued by Patent Owner—it requires "preemptive execution

of a plurality of threads," not just one thread. Although we disagree that

"plurality of threads" can be interpreted to require "two or more, but less

than all" threads, there still must be at least two interruptible threads.

PRIORITY

 The rejections

 1. The district court decision

 The district court held the '603 patent invalid under § 112, first

paragraph, for lack of written description support for "multithreading" and

found that the '604 patent was not entitled to a priority date of 1990 or

earlier. Reiffin v. Microsoft, 270 F. Supp. 2d at 1143. Since the "Detailed

Description" portion of the specification is the same for both the 1994 and

1990 applications, we speculate that the district court did not also hold the

'604 patent to be invalid because the 1994 application, as filed, mentions

"multithreading."

 The district court construed "multithreading," defined in the '603

patent (col. 1, lines 24-37), to require at least two threads.

 The district court construed "thread" as follows:

 "A thread is the execution of a sequence of instructions constituting

one of the possibly many procedures, functions or subroutines within
the program. Further, when interrupted, a thread's context must be
saved and retrievable when a thread is reassigned control of the CPU
and resumes execution."

Id. at 1138. This definition comes from Patent Owner's arguments during

prosecution of the '603 patent. See Reiffin v. Microsoft, 64 USPQ2d at 1115.

Appeal 2007-2127
Reexamination Control No. 90/006,621

62

 There are two possibilities for the two threads: the compiler and the

editor. The district court concluded that the editor is not a thread because it

does not have the attributes of a thread. First, the editor does not possess the

capacity to be interrupted, as required by the '603 patent's definition of

"preemptive multithreading." This corresponds to Microsoft's first argued

critical defect, Reiffin v. Microsoft, 270 F. Supp. 2d at 1140. The court

determined that the sentence relied upon by Patent Owner to show that the

editor was interruptible, that "clock interrupts of about every 10 to 30

milliseconds should be frequent enough to keep up with the keys stroked at

the keyboard" ('603 patent, col. 13, lines 18-20) "does not require the reader

to infer that the editor must be interruptible," id. at 1142.

 Second, the court concluded that there is "no express provision within

the description for the saving and retrieving of the context of the editor, as

required by the court's construction of the term 'thread,'" id., and that "the

description does not characterize the editor as having any features of a

thread," id. This corresponds to Microsoft's third argued critical defect, id.

at 1140. Therefore, the court concluded, the "editor cannot, therefore, be

interpreted as a thread," id. at 1142.

 The district court concluded: "The written description of the

invention neither expressly nor inherently discloses that the editor is a

thread. The system described, which contains only one thread, the compiler,

cannot be interpreted as a multithreading system, as the term 'multithreading'

is defined in the '603 patent." Id.

Appeal 2007-2127
Reexamination Control No. 90/006,621

63

 2. Examiner's rejection

 The Examiner found that none of the reexamination claims are

entitled to a priority date earlier than the filing date of the '604 patent

because there is no written description support for the term "multithreading"

in the '603 patent (filed in 1990) or the earlier 1985 and 1982 applications

for the following reasons.

 The Examiner states that Patent Owner did not introduce the term

"multithreading" until after the filing date of the 1990 application, indicating

that he did not have possession of the invention in 1982 (Final

Rejection 64-65 ¶ III.2).

 The Examiner states that the '603 patent does not disclose preempting

more than one thread because the editor can not be interrupted and the editor

is not a thread because there is no disclosure of saving and restoring its

context (Final Rejection 65-72 ¶ III.3(A)-(F)). These reasons correspond

exactly to the six critical defects argued by Microsoft in Reiffin v. Microsoft,

270 F. Supp. 2d at 1140.

 The Examiner states that the '603 patent does not disclose necessary

features of multithreading, such as "start," "stop," "communication with each

other," "synchronization," "serialize use of system resources," "close

cooperation of threads," and/or interference of one thread by another thread

(Final Rejection 72-73 ¶ III.3(G)).

 The Examiner adopts the reasons stated by the district court in Reiffin

v. Microsoft, 270 F. Supp. 2d at 1142-43 (Final Rejection 73-74 ¶ III.4).

Appeal 2007-2127
Reexamination Control No. 90/006,621

64

 Issue

 Many claims stand rejected as anticipated by the Krantz reference,

which is dated 1988, before the filing date of the 1990 application. Patent

Owner does not contest the anticipation rejection, but argues that Krantz is

not prior art because the '604 patent is entitled to the benefit of the filing

date of the 1982 application. Thus, it is necessary to determine whether the

reexamination claims are entitled to the priority of the filing dates of the

1985 and 1982 applications. Since Patent Owner relies on the 1982

application, and since the 1985 application is identical to the 1982

specification except for a reference to the 1982 application and a computer

program which is not at issue, we refer only to the 1982 application.

 The issue is whether the reexamination claims are entitled to the

benefit of the filing date of the 1982 application under 35 U.S.C. § 120 and,

in particular, whether there is written description support under § 112, first

paragraph, in the 1982 application for the term "multithreading" which

appears in all of the reexamination claims.

 Principles of law

 "In order to gain the benefit of the filing date of an earlier application

under 35 U.S.C. § 120, each application in the chain leading back to the

earlier application must comply with the written description requirement."

Lockwood v. American Airlines, Inc., 107 F.3d 1565, 1572,

41 USPQ2d 1961, 1968 (Fed. Cir. 1997) (citing In re Hogan, 559 F.2d 595,

609, 194 USPQ 527, 540 (CCPA 1977)). In order to satisfy the written

description requirement, "the applicant must . . . convey with reasonable

clarity to those skilled in the art that, as of the filing date sought, he or she

Appeal 2007-2127
Reexamination Control No. 90/006,621

65

was in possession of the invention." Vas-Cath Inc. v. Mahurkar, 935 F.2d

1555, 1563-64, 19 USPQ2d 1111, 1117 (Fed. Cir. 1991). Thus, "[t]he

possession test requires assessment from the viewpoint of one of skill in the

art." Moba, B.V. v. Diamond Automation, Inc., 325 F.3d 1306, 1320,

66 USPQ2d 1429, 1439 (Fed. Cir. 2003). "Although the exact terms need

not be used in haec verba, . . . the specification must contain an equivalent

description of the claimed subject matter." Lockwood v. American Airlines

Inc., 107 F.3d 1565, 1572, 41 USPQ2d 1961, 1966 (Fed. Cir. 1997).

 Newly coined terms which are supported by the orginal specification

do not present a new matter problem. See Brookhill-Wilk 1, LLC v. Intuitive

Surgical, Inc., 334 F.3d 1294, 1303, 67 USPQ2d 1132, 1140 (Fed. Cir.

2003), discussing Schering Corp. v. Amgen, 222 F.3d 1347,

55 USPQ2d 1650 (Fed. Cir. 2000) (During the pendency of the patent, the

scientific community coined the phrase "IFN-alpha", to refer to a class of

compounds encompassing both patentee's disclosed "leukocyte interferon,"

designated as by those skilled in the art as "IFN-alpha-1," and other

compounds. The Federal Circuit construed the scope of claim coverage to

be consistent with the scope of the term originally used.)

 Analysis

 1. "Multithreading" is not expressly disclosed

 None of the 1982, 1985, and 1990 applications, as filed, expressly

mentions the terms "thread" or "multithreading." The 1990 application was

amended after the filing date to disclose and claim "multithreading,"

However, these amendments are not part of the original disclosure of the

1990 application. See MPEP § 714.01(e) ("Any amendment filed after the

Appeal 2007-2127
Reexamination Control No. 90/006,621

66

filing date of the application is not part of the original disclosure of the

application"). In any case, the priority determination is based on the content

of the 1982 application, as filed. There is no express written description

support for "multithreading" in any of the ancestor applications.

 2. "Continuation" designation is not controlling

 The '604 patent is designated a continuation of the '603 patent and the

1982 application. Patent Owner argues that "a continuation application does

not contain new matter, and all claims issuing from it are entitled to the

filing date of the parent" (Br. 27). Patent Owner further argues that the '604

patent is entitled to claim priority of the 1982 filing date because "both the

'603 and '604 patents specifically recite that the applications are 'entitled to

an effective filing date of Sept. 28, 1982'" (Br. 28) and the U.S. Patent and

Trademark Office (USPTO) would not have permitted this if there was no

support in the 1982 application (Br. 28).

 The "continuation" label does not prove that the '603 or '604 patents

have written description support for "multithreading" in the 1982 application

because, of course, the label may be wrong and the examiner may have erred

in allowing the patents to issue with those labels. The question of whether

the '604 patent is properly labeled a "continuation" of the '603 patent and

1982 application is a collateral issue to the real issue of whether there is

written description support for the term "multithreading" in the 1982

application. That is, in order to decide whether the '603 and '604 patents are

continuations of the 1982 application, it first has to be determined whether

claims to multithreading in the patents are inherently supported by the 1982

application, which is the very issue to be decided under priority.

Appeal 2007-2127
Reexamination Control No. 90/006,621

67

 Regardless of what an application is called, there is only priority for

common subject matter actually disclosed in the earlier application. "As far

as the right under the statute is concerned the name used is immaterial, the

names being merely expressions developed for convenience. The statute is

so worded that . . . the second application is entitled to the benefit of the

filing date of the first as to the common subject matter." MPEP § 201.11

(6th ed., Rev. 3, July 1997). "[T]he bottom line is that, no matter what term

is used to describe a continuing application, that application is entitled to the

benefit of the filing date of an earlier application only as to common subject

matter." Transco Products Inc. v. Performance Contracting, Inc., 38 F.3d

551, 556, 32 USPQ2d 1077, 1080 (Fed. Cir. 1994). "A CIP application can

be entitled to different priority dates for different claims. Claims containing

any matter introduced in the CIP are accorded the filing date of the CIP.

However, matter disclosed in the parent application is entitled to the benefit

of the filing date of the parent application." Waldemar Link GmbH & Co. v.

Osteonics Corp., 32 F.3d 556, 558, 31 UPSQ2d 1855, 1857 (Fed. Cir. 1994).

 Rather than waste time arguing about whether the '604 patent is

properly characterized as a "continuation" of the '603 patent and the 1982

application, it is best to directly address the question of whether there is

inherent support for "multithreading" in the 1982 application.

 3. The 1982 application does not inherently
 disclose "multithreading"

 a. Editor is not interruptible

 The determination that the '604 patent is not entitled to the priority

benefit of the 1982 application is based in part on the finding that the editor

Appeal 2007-2127
Reexamination Control No. 90/006,621

68

interrupt service routine is not interruptible. Patent Owner argued in the

California civil action that the editor in the '603 patent (which has the same

"Detailed Description" at the '604 patent) is capable of being interrupted. In

the appeal, Patent Owner appears to concede that the editor is not

interruptible, but argues that a thread does not need to be interruptible.

Nevertheless, we discuss why the editor is not interruptible because it is not

certain that Patent Owner will not change his position and because it will

help explain why the 1982 application does not disclose multithreading.

 Patent Owner argued that the sentence in the 1990 application that

"For most applications clock interrupts at about every 10 to 30 milliseconds

should be frequent enough to keep up with keys stroked," implies that the

editor must be interruptible. See Reiffin v. Microsoft, 270 F. Supp. 2d

at 1140-42. The district court found that the sentence did not suggest that

the editor was interruptible because the plain meaning is just what the

sentence says, and "[t]he reasonable inference to draw is that, if such an

interval of time is inadequate, then the period between interruptions can be

adjusted accordingly, e.g., to 50 milliseconds." Id. at 1142. The district

court also concluded that "[t]he plain reading of the sentence is further

bolstered by the fact that there is no express provision within the description

for the saving and retrieving of the context of the editor, as required by the

court's construction of the term 'thread.'" Id.

 We agree with the district court's reasoning. In addition, we agree

with the Examiner's reliance on Zaks, Programming the Z80, pages 500-502,

for technical reasons why the editor, as disclosed, is not interruptible. The

'604 patent (and the 1990, 1985, and 1982 applications) discloses a system

utilizing a Z80 microprocessor (e.g., Figure 2). We compare the description

Appeal 2007-2127
Reexamination Control No. 90/006,621

69

of the Z80 interrupt operation in the '604 patent (which is identical to the

description in the 1982 application) with the description in Zaks to show that

no interruption of the editor interrupt service routine is disclosed.

 The '604 patent states that an interrupt signal is transmitted to "the

interrupt request pin INT* of the Z80 CPU" ('604 patent, col. 4, lines 28-29).

"Assuming that the interrupt of the processor is enabled, upon completion of

the present instruction the CPU's status pins IORQ* and M1* are activated

. . . ." (Id. at col. 4, lines 30-32). Compare Zaks, page 500 ("Essentially, the

Z80 will respond to the interrupt by generating an IORQ (and an M1 signal),

and then do nothing, except wait."). The '604 patent states that the IORQ*

and M1* signals are used to "form the INTA (interrupt acknowledge) signal"

(col. 4, lines 30-34) which causes an external interrupt vector register to put

an RST instruction on the data bus. ('604 patent, col. 4, lines 34-37).

Compare Zaks, page 500 ("It is the responsibility of an external device to

recognize the IORQ and M1 (this is called an interrupt acknowledge or

INTA) and to place an instruction on the data-bus. . . . Typically, an RST or

a CALL instruction is placed on the bus.").

 The '604 patent states ('604 patent, col. 4, lines 38-49):

 The RST instruction is then input to and executed by the Z80

CPU, causing the latter to push the contents of the program counter
onto the stack, and further causing the CPU to jump to a
predetermined location in low memory. This location stores a
"vector" or three-byte JMP (jump) instruction to an interrupt service
routine. The latter includes the editor as well as a subroutine to store
the contents of the CPU registers. Control of the CPU is then retained
by the editor until either a character has been entered into the source
code buffer or an editing operation has been completed.

Appeal 2007-2127
Reexamination Control No. 90/006,621

70

Compare, Zaks, page 500:

 Typically, an RST or a CALL instruction is placed on the bus. Both

of these instructions automatically preserve the program counter in the
stack, and cause branching to a specific address. The advantage of the
RST instruction is that it resides within a single byte, i.e., it executes
rapidly. Its disadvantage is to branch to only one of eight possible
locations in page zero (addresses 0 through 255). . . .

 The '604 patent describes that the CPU is vectored to the interrupt

service routine, which includes a subroutine to perform the SAVE

REGISTERS procedure and execute the editor program ('604 patent, col. 5,

lines 11-15). When the editor is finished ('604 patent, col. 5, lines 23-32):

 The interrupt service routine then jumps to its subroutine to

perform the RESTORE REGISTERS procedure whereby the registers
of the CPU are restored to their original values at the instant of the
interrupt.

 The ENABLE INTERRUPT instruction (EI) is then executed

by the CPU so that the latter may respond to the next interrupt.
Finally, the RET instruction is executed so that the CPU may
RETURN TO COMPILER. The compiler resumes execution from
the point where it was interrupted.

Compare, Zaks, pages 500-501:

 Note that once the interrupt processing starts, all further

interrupts are disabled. [Interrupt flip-flops] IFF1 and IFF2 are
automatically set to "0". It is then the responsibility of the
programmer to insert an EI instruction (Enable Interrupt) at the
appropriate location within his program if he wishes to enable
interrupts, and, in any case, before returning from the interrupt.

 Thus, once the interrupt processing of the editor program starts,

further interrupts are disabled, i.e., a clock-signal will not cause an interrupt.

Appeal 2007-2127
Reexamination Control No. 90/006,621

71

Although the programmer could enable interrupts once the interrupt routine

starts, since the '604 patent does not disclose inserting an enable interrupt

(EI) instruction until just before returning, the editor is not interruptible.

 Patent Owner does not argue in this appeal that the editor is

interruptible. Instead, Patent Owner argues that the editor does not have to

be interruptible to be a "thread."

 b. Operation of the 1982 compiler/editor

 The differences between "preemptive multithreading" and Patent

Owner's 1982 interrupt system are illustrated in the drawing below.

Appeal 2007-2127
Reexamination Control No. 90/006,621

72

 In preemptive multithreading, Thread 1 is interrupted at the end of its

timeslice, the Thread 1's context is saved (including Thread 1's program

counter), Thread 2's context is retrieved and loaded into the CPU (including

Thread 2's program counter indicating the next instruction to be executed),

Thread 2 executes until the end of its timeslice, whereupon Thread 2's

context is saved, Thread 1's context is retrieved and loaded into the CPU,

and the process repeats. Each thread executes an incremental portion of its

task during each timeslice. At any point in time, both threads are executing

at some point between their beginning and end, except for needing to share

the CPU—this is what is meant by concurrent execution of threads.

 In the 1982 application, the compiler is interrupted, registers are

saved, the editor interrupt service routine executes until it finishes, the

registers are restored, and control is returned to the compiler by an

instruction in the interrupt service routine. According to what Patent Owner

states to be the normal operation, the editor finishes before the end of the

timeslice and control returns to the compiler. As seen in the middle figure,

the compiler is then interrupted at the next interrupt. Because of the varying

amounts of time required by the editor, depending on the operation to be

performed and whatever else is happening on the computer, the editor and

compiler do not execute for equal periods of time. If the editor takes longer

than a timeslice, the editor continues to execute past the interrupt time since

interrupts are disabled as shown by the bottom figure. The editor is never

interrupted but always finishes executing and returns control to the compiler.

 Importantly, the compiler and editor do not execute concurrently as

that term is defined in "multithreading." Concurrent execution requires that

Appeal 2007-2127
Reexamination Control No. 90/006,621

73

two (or more) sets of instructions are executing at some point between their

start and end points (either at the same time if each set of instruction has its

own processor or by taking turns executing on a single processor), as in the

top figure, not just that the sets of instructions execute closely in time. In the

1982 application (and all later applications because they share the same

"Detailed Description"), the editor executes until it is completely finished, so

the compiler can never execute at the same time as the editor even if another

CPU was available. And, when the compiler executes, the editor is not

executing because it is not at some point between its beginning and end.

That is, the editor and compiler do not take turns executing successive

incremental portions of their subtasks.

 c. Since editor is not interruptible, it is not a thread

 The '604 patent's definition of "multithreading" requires "preemptive

time-sliced execution of a plurality of threads of instructions located within

the same software program," which requires that a plurality of threads are

subject to "preemptive time-sliced execution"; i.e., a plurality of threads are

capable of being preempted (they are "interruptible") to execute for a fixed

timeslice. While we find that one of ordinary skill in the art would interpret

a "plurality of threads" to mean "all of the threads," it is sufficient to decide

this appeal that two or more threads have to be preempted. Patent Owner's

definition of "thread" requires that "when interrupted, a thread's context

must be saved and retrievable when a thread is reassigned control of the

CPU and resumes execution." Thus, the attributes of the "plurality of

threads" in a "preemptive time-sliced multithreading" environment are:

Appeal 2007-2127
Reexamination Control No. 90/006,621

74

(1) each is interruptible; and (2) each thread must have a thread context

which is stored when the thread is interrupted.

 There are only two possibilities for threads in the 1982 application:

the compiler and the editor. The editor is not interruptible. Since the editor

is not interruptible, it does not have a context that is saved and retrieved.

Therefore, the editor does not have either of the attributes of a thread. Since

there is only one thread, the compiler, this is not multithreading. A thread is

more than just a series of program instructions. This is the same reasoning

applied by the district court in finding that the '603 patent does not disclose

multithreading. See Reiffin v. Microsoft, 270 F. Supp. 2d at 1142 ("The

written description of the invention [in the 1990 application] neither

expressly nor inherently discloses that the editor is a thread. The system

described, which contains only one thread, the compiler, cannot be

interpreted as a multithreading system, as the term 'multithreading' is defined

in the '603 patent."). The Examiner adopts the reasons stated by the district

court (Final Rejection 73-74 ¶ III.4). The '603 and '604 patents and the 1982

and 1985 applications all share the same "Detailed Description," so there is

no written description support for "multithreading" in the 1982, 1985, or

1990 applications. Accordingly, the '604 patent is not entitled to the priority

filing date of the 1982 application.

 d. Even if the editor was interruptible
 there is no multithreading

 For the 1982 and subsequent applications to teach "preemptive

multithreading," as that term is defined in the art, the editor would have to be

interrupted (preempted) to return control of the CPU to the compiler before

Appeal 2007-2127
Reexamination Control No. 90/006,621

75

it finished executing. This is neither disclosed nor contemplated. Even if

the editor was interruptible, e.g., if a programmer inserted an enable

interrupt (EI) instruction at the beginning of the editor interrupt service

routine (see previous description of why the editor is not interruptible), a

clock-activated interrupt would always cause the system to go to the editor

interrupt service routine (the interrupt would interrupt the interrupt), never

back to the compiler. It is not clear that interrupting the editor in the middle

of its operation to run another instance of the editor would even work. But,

in any case, there is no switching back and forth between the compiler and

the editor as required for "preemptive multithreading." For this additional

reason, we find that there is no written description of "preemptive

multithreading" in the 1982, 1985, or 1990 applications, and, therefore, the

'604 patent is not entitled to the priority filing date of the 1982 application.

 e. Editor and compiler are not executed concurrently

 The 1982 application also fails to disclose "multithreading" because

the editor and compiler programs do not execute "concurrently" in the

technical sense required by the definition of "multithreading." The '604

patent's definition of "multithreading" requires "concurrent . . . execution of

a plurality of threads of instructions located within the same software

program." "Concurrent execution" means that, at a given time, two or more

threads within the same program are executing at some point between their

starting and finishing points at the same time, not just that two sets of

instructions execute closely in time.. If there are two threads and two

processors, both threads could run simultaneously (at exactly the same time);

however, because there is only one processor, the threads take turns

Appeal 2007-2127
Reexamination Control No. 90/006,621

76

executing incremental portions of their respective subtasks in different parts

of the program. As noted in the claim interpretation, this is consistent with

the '604 patent's description of multithreading ('604 patent, col. 1,

lines 45-53) and with independent claims 1, 18, 22, and dependent claim 25,

which recite that the threads alternate and perform successive incremental

portions of their respective subtasks, meaning that both threads are executing

at the same time except for the threads switching back and forth.

 The "interrupt" operation disclosed in the 1982 application does not

involve "concurrent execution" of the compiler main program and the editor

interrupt service routine. The main program is stopped when an interrupt

occurs and does not begin running again until the interrupt service routine

program finishes. Thus, the main program can never "execute" at the same

time as the interrupt service routine. This is an example of "sequential

operation" because the main program can never run after the interrupt

service routine has only executed part of its task. If the editor interrupt

service routine could be interrupted by second editor routine, its execution

also would be completely halted until the second editor routine finished. By

contrast, in a "preemptive multithreaded" system, a first thread runs for a

timeslice, a second thread runs for a timeslice, the first thread runs again for

another timeslice, and so on in alternating fashion. Thus, both threads

execute at the same time, but for the need to alternate access to the CPU.

This operation is possible because of the design of the operating system.

Hardware interrupts as disclosed in the 1982 application were well known,

as evidenced by De Jong infra, but were never termed "multithreading."

 For this additional reason, we find that there is no written description

of "preemptive multithreading" in the 1982, 1985, or 1990 applications, and,

Appeal 2007-2127
Reexamination Control No. 90/006,621

77

therefore, the '604 patent is not entitled to the priority filing date of the 1982

application.

 f. Editor and compiler are not in same program

 The 1982 application also fails to disclose "multithreading" because

the editor and compiler programs are not part of the same program. The

'604 patent's definition of "multithreading" requires "execution of a plurality

of threads of instructions located within the same software program." While

the compiler and editor cooperate as if they were part of the same program,

they are, in fact, separate programs. Even if it was possible for the compiler

and editor to execute concurrently, which it is not, and even if the editor was

a thread that was interruptible, which it is not, this is not "multithreading"

because the compiler and editor are not part of the same program.

 The compiler is the main program, which is stored at a certain

location in memory. The editor interrupt routine is a program stored in a

different part of memory that the compiler, i.e., the compiler program does

not contain any editor program instructions. The compiler is started and

continuously executed by the CPU. Whenever a keyboard- or clock-

activated interrupt occurs, an interrupt sequence causes the CPU to go to one

of eight possible locations in a "vector table" indicated by the RST (restart)

instruction (see description of Z80 microprocessor in the section on why the

editor is not interruptible). The entry in the "vector table" is an address of

another location in memory where the actual editor service routine is stored.

When the editor interrupt service routine is finished, a RET (return)

instruction returns control to the compiler and processing continues at the

first instruction following the interrupted instruction. The editor interrupt

Appeal 2007-2127
Reexamination Control No. 90/006,621

78

service routine is completely separate from the compiler program and the

editor does not execute any instructions in the compiler program. This

interrupt operation is illustrated by Chart 7-2 in De Jong, page 174, which is

applied in one of the anticipation rejections.

 For this additional reason, we find that there is no written description

of "preemptive multithreading" in the 1982, 1985, or 1990 applications, and,

therefore, the '604 patent is not entitled to the priority filing date of the 1982

application.

Appeal 2007-2127
Reexamination Control No. 90/006,621

79

 g. Editor does not have other "thread" attributes

 "Threads" in a "preemptive multithreading" environment have many

other attributes besides those discussed above, which are not taught or

suggested by the 1982, 1985, or 1990 applications. First, threads in a

multithreaded program are started by special program instructions, whereas

the editor in the 1982 application is another program started by an interrupt.

The fact that the editor is not started by instructions in the compiler is more

evidence that the editor and compiler are not part of the same program.

 Second, there is no "scheduling" or "dispatching" of threads in Patent

Owner's applications. The 1982 application does not describe an operating

system capable of scheduling and dispatching threads. Although claim 31 in

the '604 patent recites a "thread scheduler," this is just an attempt to make

the claim sound more like the OS/2 system because the 1982 application

does not describe "scheduling" to decide which thread will execute.

 Third, the MS-DOS operating system in existence in 1982 was not

capable of "multithreading" as that term is defined in the art. See Custer,

Inside Windows NT , page 106 ("Win32 and OS/2, for example, allow

multiple threads per process, whereas POSIX, MS-DOS, and the Windows

16-bit environments do not.").

 Fourth, the thread context includes at least the contents of thread's

stack and register set, including the program counter. See, e.g., Iacobucci,

OS/2 Programmer's Guide, page 106-107 ("The thread provides program

code with an execution environment that consists of the register values,

stack, and the CPU mode. The execution environment is collectively

referred to as the thread's context."); Krantz, OS/2, page 64 ("Each thread of

Appeal 2007-2127
Reexamination Control No. 90/006,621

80

the process requires a separate save are for its registers."). None of the

applications discloses saving a stack.

 Nevertheless, this rejection relies only on the definition of

"preemptive multithreading" in the '604 patent.

 4. Examiner's rejection

 As noted above, we affirm the part of the Examiner's rejection based

on the district court's reasoning in Reiffin v. Microsoft.

 The Examiner's reasoning that Patent Owner did not introduce the

term "multithreading" until after the filing date of the 1990 application,

indicating that he did not have possession of the invention in 1982 (Final

Rejection 64-65 ¶ III.2), does not address the Patent Owner's argument that

the terms "thread" and "multithreading" were coined after the 1982

application, but are inherently supported by disclosure of the 1982

application. Thus, this reason is not persuasive and is not relied upon.

 The Examiner's reasoning that the '603 patent does not disclose

necessary features of multithreading, such as "start," "stop," "communication

with each other," "synchronization," "serialize use of system resources,"

"close cooperation of threads," and/or interference of one thread by another

thread (Final Rejection 72-73 ¶ III.3(G)), does not clearly define properties

of "threads" or "multithreading." The first quotation relied upon by the

Examiner refers to "multitasking," not "multithreading," and, therefore, does

not establish multithreading properties even though multithreading is a type

of multitasking. The second quotation refers to the need for threads in

multithreading to cooperate very closely, and the third quotation refers to the

problem that threads can interfere with other threads, but the Examiner does

Appeal 2007-2127
Reexamination Control No. 90/006,621

81

not explain how this advances the rejection. Therefore, these reasons are not

persuasive and are not relied upon.

 5. "Multithreading" in '604 patent is not examined
 for compliance with § 112 requirements

 Since we find that there is no written description support for

preemptive "multithreading" in the 1982, 1985, or 1990 applications, and

since the "Detailed Description" is the same in these applications and the

'604 patent, a logical question is whether there is a problem with claiming

"multithreading" in the '604 patent. Although the original 1994 application,

which became the '604 patent, describes and claims "multithreading," it can

be argued that the disclosed embodiment does not demonstrate possession

of multithreading as that term is defined in the art for the reasons discussed

supra. See In re Reiffin, 199 Fed. Appx. 965 (Federal Circuit affirmed the

Board's finding that there was no written description support for

"multithreading" in a 1991 continuation-in-part application of the 1990

application even though the term appeared in the application as filed). It is

possible that other rejections may be appropriate, such as lack of enablement

under 35 U.S.C. § 112, first paragraph, for making a "multithreaded" system

as that term is understood in the art, and/or a rejection under § 112, second

paragraph, because "multithreading" is misdescriptive of the disclosed

embodiment. However, these issues are not raised under USPTO guidelines.

It is proper to note the existence of the issues. See 37 C.F.R. § 1.552(c).

 Proposed amended and new claims in a reexamination proceeding are

examined on the basis of the requirements of 35 U.S.C. § 112. See

37 C.F.R. § 1.552(a). Original patent claims are not examined under § 112.

Appeal 2007-2127
Reexamination Control No. 90/006,621

82

Limitations in amended and new claims are not examined if they would raise

§ 112 issues with the original patent claims. See MPEP § 2258:

II. COMPLIANCE WITH 35 U.S.C. 112

 Where new claims are presented or where any part of the
disclosure is amended, the claims of the reexamination proceeding,
are to be examined for compliance with 35 U.S.C. 112.
Consideration of 35 U.S.C. 112 issues should, however, be limited to
the amendatory (e.g., new language) matter. For example, a claim
which is amended or a new claim which is presented containing a
limitation not found in the original patent claim should be
considered for compliance under 35 U.S.C. 112 only with respect to
that limitation. To go further would be inconsistent with the statute
to the extent that 35 U.S.C. 112 issues would be raised as to matter
in the original patent claim. Thus, a term in a patent claim which the
examiner might deem to be too broad cannot be considered as too
broad in a new or amended claim unless the amendatory matter in the
new or amended claim creates the issue. [Emphasis in bold added.]

 Because the issued '604 patent claims all contain the term

"multithreading," no § 112 rejections are raised as to the new and amended

claims which contain multithreading.

 6. Patent Owner's arguments are not persuasive

 Patent Owner's arguments have been considered, but are not

persuasive on the issue of priority.

 a. Common "Detailed Description" does not prove
 there is written description support

 Patent Owner argues (Br. 20-21): "Both the 1982 application and the

1990 application contain virtually the same 'Detailed Description' of the

illustrative embodiment as that of the '604 patent. This Detailed Description

fully supports all of the '604 reexamination multithreading claims."

Appeal 2007-2127
Reexamination Control No. 90/006,621

83

 While it is true that the 1982, 1985, 1990, and 1994 applications have

the same Detailed Description and the same Figures 1-6,2 this does not prove

that the Detailed Description expressly or inherently disclose "threads" or

"multithreading." The fact that the 1994 application describes

"multithreading" does not "carry back" to the earlier applications. The fact

that an examiner allowed Patent Owner to add multithreading to the 1990

application, which became the '603 patent, does not prove that the original

1990 application inherently provides written description support for

multithreading since there is no proof that the examiner was correct. The

priority determination is based on a factual inquiry into the 1982 application,

not on inferences. Basically, Patent Owner is mistaken in his understanding

that the disclosed invention can be described as "multithreading," as that

term is defined in the art and in the '604 patent.

 b. Reiffin v. Microsoft is not stare decisis

 Patent Owner argues that "[t]he Federal Circuit had it right in Reiffin

v. Microsoft Corp. when it correctly ruled that 'the district court erred in

holding the '603 and '604 claims invalid for failure to comply with the

written description requirement' of 35 U.S.C. § 112, ¶ 1" (Br. 4). It is argued

(Br. 21-24) that the Examiner's claim construction and written description

rulings underlying the priority date finding are precluded by the law of stare

 2 Figures 1A, 2A, and 3A were added by amendment, but Patent
Owner does not rely on these figures or references thereto (Br. 20 n.2).

Appeal 2007-2127
Reexamination Control No. 90/006,621

84

decisis arising out of the Federal Circuit's decision in Reiffin v.Microsoft.

Patent Owner relies mostly on the following statement from that case:

 The two patents in suit have the same specification, and differ

as to their claims; the '603 patent claims a memory product storing
multithreaded software, and the '604 patent claims a method of
multithreaded operation and a multithreaded system. Claim 12 of
the '603 patent is representative. [Quoting claim 12 to a disk
encoded with a plurality of concurrently executable threads of
instructions constituting a multithreaded computer program.]
[Emphasis added.]

214 F.3d at 1344, 54 USPQ2d at 1916. Patent Owner argues (Br. 22-23):

 It is well settled that no amount of extrinsic evidence can

overcome the intrinsic evidence of the definitions set forth in a
specification. The inventor is the lexicographer, not the Patent Office.
The Federal Circuit had before it and considered the specifications of
Patent Owner's 1982 application and his '603 and '604 patents. The
specifications considered by the Federal Circuit included definitions
erroneously rejected by the Examiner. The Federal Circuit described
the invention using Patent Owner's terms, and set forth as
"representative" of the invention a patent claim reciting Patent
Owner's defined terms.

 Patent Owner's argument that "[t]he Federal Circuit had it right in

Reiffin v. Microsoft Corp. when it correctly ruled that 'the district court erred

in holding the '603 and '604 claims invalid for failure to comply with the

written description requirement' of 35 U.S.C. § 112, ¶ 1" (Br. 4) implies that

the Federal Circuit expressly found that the '603 and '604 patents met the

written description requirement. Patent Owner's argument that "[t]he

Federal Circuit had before it and considered the specifications of Patent

Owner's 1982 application and his '603 and '604 patents" (Br. 22-23), and that

by its stating that the two patents have the same specification, its describing

Appeal 2007-2127
Reexamination Control No. 90/006,621

85

the two patents in terms of "multithreaded," and its quoting claim 12 from

the '603 patent containing the terms "threads," "multithreaded," and

"concurrently executable threads," implies that the Federal Circuit expressly

decided that there was support for "multithreading" in the '603 patent and,

therefore, the USPTO is bound by stare decisis from asserting that the 1994

application is not entitled to the priority date of the 1982 application.

 These arguments are not persuasive. The Federal Circuit was

reviewing a district court decision granting summary judgment to Microsoft

on the ground that the '603 and '604 patents were invalid for failure to meet

the written description requirement of 35 U.S.C. § 112, first paragraph,

based on the so-called "omitted element test." The district court noted that

"Microsoft's motion only addresses one specific aspect of the written

description requirement (namely, the omitted element test)," Reiffin v.

Microsoft Corp., 48 USPQ2d 1274, 1276 (N.D. Cal. 1998). The Federal

Circuit expressly stated that "[t]he district court did not decide whether the

claims of the '603 and '604 patents are adequately supported by the written

descriptions of the inventions set forth in the specifications of those patents."

Reiffin v. Microsoft, 214 F.3d at 1345, 54 USPQ2d at 1917. The Federal

Circuit further stated:

 Microsoft did not dispute, in its motion for summary judgment

or on this appeal, that the descriptive texts of the issued '603 and '604
patents meet the written description requirement as to the claims of
those patents, and the district court did not discuss this issue. Instead,
the district court looked to the specification of Reiffin's 1982
grandparent application for the written description relevant to the
claims of the '603 and '604 patents

Appeal 2007-2127
Reexamination Control No. 90/006,621

86

Id. at 1346, 54 USPQ2d at 1917. Thus, the Federal Circuit did not decide

that the '603 and '604 patents satisfy the written description requirement for

"multithreading," as implied by Patent Owner, but only held that the district

court erred in deciding that there was no written description in those patents

based on the 1982 application, when the 1982 application was not relied on.

The fact that the Federal Circuit used the term "multithreading" does not

mean that it had decided that there was written description for the term. The

doctrine of "stare decisis" is totally inapplicable in this situation.

 Patent Owner's second point (apparently) is that the definition of

"multithreading" in the 1990 application is intrinsic evidence of support in

the 1990 application, which cannot be overcome with extrinsic evidence.

Since the issue is priority, we assume Patent Owner is not talking about

written description in the 1994 application.

 There are several responses to this argument. First, the definitions of

"threads" and "multithreading" in the '603 patent are not part of the original

1990 disclosure, but were added by amendment after the filing date; they are

not intrinsic evidence in the original specification. See Phillips v. AWH,

415 F.3d at 1313, 75 USPQ2d at 1326 ("the ordinary and customary

meaning of a claim term is the meaning that the term would have to a person

of ordinary skill in the art in question at the time of the invention, i.e., as of

the effective filing date of the patent application"). Second, Patent Owner

admitted during prosecution of the 1990 application that the terms "threads"

and "multithreading" have their ordinary meaning in the art, and referred to

extrinsic sources of dictionaries and treatises, thus expressly bringing

extrinsic evidence of the meanings within the realm of prosecution history

intrinsic evidence. Third, by stating that terms have their ordinary meaning

Appeal 2007-2127
Reexamination Control No. 90/006,621

87

in the art, Patent Owner admitted that he did not intend to be his own

lexicographer by giving the terms a different meaning than was known in the

art. Fourth, the issue for priority is whether the 1982 application provides

written description support for "multithreading" as defined in the '604 patent,

not as defined by amendments to the 1990 application.

 c. USPTO actions are not collateral estoppel

 Patent Owner argues that the USPTO is barred by collateral estoppel

from finding that the 1994 application is not entitled to the priority date of

the 1982 application because "numerous previous decisions and actions

taken by the Patent Office during the prosecution that led to the issuance of

the '603 and '604 patents establish that the claims on reexamination are

entitled to the 1982 priority date" (Br. 26). In particular, it is argued:

 (1) An examiner allowed Patent Owner to amend the status of the

1990 application from a "continuation-in-part" to a "continuation" of the

1982 application, and the '604 patent issued as a continuation of both the

1990 and 1982 application. "[A] continuation application does not contain

new matter, and all claims issuing from it are entitled to the filing date of the

parent." (Br. 27.)

 (2) The USPTO allowed the claims of the '603 and '604 patents,

which recite "multithreading" or "multithreaded" in 72 out of 77 claims

(Br. 28). "During prosecution [of the 1990 and 1994 applications], Patent

Owner specifically submitted numerous post-1982 references describing

multithreading (they were submitted, inter alia, as evidence of the meaning

of 'multithreading' and other terms), and none of these references were cited

Appeal 2007-2127
Reexamination Control No. 90/006,621

88

as prior art" (Br. 27), indicating that the Examiner considered the

applications entitled to the 1982 priority date.

 (3) "[O]n a number of separate occasions, the Patent Office

specifically and deliberately stated that the patent claims were entitled to the

filing date of the original 1982 application." (Br. 28.) Patent Owner points

to several Examiner's Answers (Exhibits 44-47) which cite an effective

filing date of 1982 for the 1990 and 1994 applications (Exhibit 48 indicates

that "1992" in the Examiner's Answers of Exhibits 46 and 47 should be

"1982") (Br. 28). It is noted that the Examiner stated in the Examiner's

Answer of Exhibit 46, that "the time of the [Patent Owner's] invention" was

"1982," and stated in the Supplemental Examiner's Answer of Exhibit 47

that OS/2 publications would not be considered because they were

"published after the effective filing date of the application" (pages 4-5) and

were "developed after Applicant's effective filing date" (page 7) (Br. 28).

 (4) "[B]oth issued '603 and '604 patents specifically recite that the

applications are 'entitled to an effective filing date of September 28, 1982'"

(Br. 28) and "[t]he Patent Office would not have done this unless it was

satisfied that the '603 and '604 claims were supported by the original 1982

specification" (Br. 29).

 (5) A Board decision on appeal in the 1990 application entered a new

ground of rejection of claim 59 under § 112, first paragraph, for lack of

written description of "asynchronously" interrupting execution of the threads

(Exhibit 51), but did not reject any other claims (Br. 29). It is noted that the

Board characterized (Exhibit 51, page 2) the disclosed invention in

essentially the words of claim 62, which recited a "multithreading

software-programmable general-purpose computer system for concurrent

Appeal 2007-2127
Reexamination Control No. 90/006,621

89

processing and modification of the same body of data by at least two

concurrently executing instruction threads constituting a single program"

(Exhibit 52, Appeal Brief, page 34) (Br. 30).

 (6) A Board decision on appeal in the 1994 application characterized

the claims as "a method and apparatus for preeemptive multithreaded

execution of a plurality of instruction threads located within the same

multithreaded software program in a general-purpose computer system"

(Exhibit 53, page 2) and reversed the prior art rejection (Br. 30). "Thus, the

Patent Office, including the Board of Patent Appeals and Interferences on

two separate occasions, has specifically considered and rejected the

fundamental priority date issue raised by the Examiner." (Br. 30.) It is

argued that the USPTO is bound by collateral estoppel from raising the

priority issue by the Supreme Court's decision in Commissioner of Internal

Revenue v. Sunnen, 333 U.S. 591, 77 USPQ 29 (1948) (Br. 24).

 Decisions of an examiner have no judicial effect and cannot constitute

collateral estoppel. Thus, the facts that an examiner gave the '604 patent the

benefit of the 1982 filing date, allowed the Patent Owner to state that the

'603 and '604 patents were continuations of the 1982 application, and

allowed claims having the terms "multithreading" in the '603 and '604

patents are not binding in this appeal.

 The statements that the '603 and '604 patents have an effective filing

date of 1982 means only that they are entitled to that date as to commonly

disclosed subject matter, not for everything. See Transco v. Performance

Contracting, 38 F.3d at 556, 32 USPQ2d at 1080 ("[T]he bottom line is that,

no matter what term is used to describe a continuing application, that

Appeal 2007-2127
Reexamination Control No. 90/006,621

90

application is entitled to the benefit of the filing date of an earlier application

only as to common subject matter.").

 The fact that the Board opinions mention multithreading and repeated

the 1982 priority date that Patent Owner said that he was entitled to, does not

imply that the panels ever recognized, much less expressly decided, the issue

of written description support for "multithreading" so as to raise a collateral

estoppel issue. Since the Board decides appeals, issues that are not

expressly raised by the examiner or the applicant may not be apparent.

"[I]t regularly happens in adjudication that issues do not arise until counsel

raise them." Enzo Biochem, Inc. v. Gen-Probe Inc., 323 F.3d 956, 972,

63 USPQ2d 1609, 1619 (Fed. Cir. 2002) (Lourie, J. and Newman, J.,

concurring in decision not to hear the case en banc).

 In any case, this panel is not bound by collateral estoppel by other

ex parte Board opinions. The duty of the USPTO is to issue valid patents.

See Keystone Bridge Co. v. Phoenix Iron Co., 95 U.S. 274, 278 (1877) (In

the Patent Office, applicant's "claim is, or is supposed to be, examined,

scrutinized, limited, and made to conform to what he is entitled to.");

Graham v. John Deere Co., 383 U.S. 1, 18 (1966) ("[T]he primary

responsibility for sifting out unpatentable material lies in the Patent Office.

To await litigation is—for all practical purposes—to debilitate the patent

system."). The doctrine of res judicata is judicial in origin and "rests upon

considerations of economy of judicial time and public policy favoring the

establishment of certainty in legal relations," Comm'r v. Sunnen, 333 U.S. at

597, 77 USPQ at 31, and the same reasoning applies to collateral estoppel.

The public policy of issuing valid patents outweighs the judicial and public

policy considerations of res judicata and collateral estoppel. See In re Craig,

Appeal 2007-2127
Reexamination Control No. 90/006,621

91

411 F.2d 1333, 1336, 162 USPQ 157, 159 (CCPA 1969) (where Board has

conceded error in a prior decision, the broad countervailing pubic policy

considerations of granting valid patents preclude the application of

res judicata). The Board must be free to correct mistakes or omissions and

to consider previously unidentified patentability issues.

 d. Context of all threads must be capable of being saved

 Patent Owner argues that "the context of a thread need only be saved

if it is interrupted" (Br. 37) and "it is only necessary for one thread to be

interrupted" (Br. 39). Patent Owner argues that his declaration establishes

that the 8080 and Z80 microprocessors have context-saving capabilities built

in "with only routine contribution by the programmer who inserts push, pop

and return instructions at appropriate points in his software" (Br. 38).

 As discussed in the claim interpretation section, the definition of

"multithreading" in the '604 patent requires preemption (interruption) of a

plurality of threads, not just one thread. As discussed supra, in this priority

section, the editor interrupt routine is not described to be interruptible.

Patent Owner's arguments about context saving with "routine contribution

by the programmer" go to what is possible, or perhaps to what would have

been obvious, but not to what is actually disclosed. The arguments that the

editor is interruptible and its context saved is without any factual support.

 Patent Owner request that we take Official Notice that "Every

procedure and function in a high-level language is automatically provided

with a stack by the code generator when it is compiled" (Br. 41).

 We do not make the requested finding of Official Notice. First, it is

not relevant because we do not rely on the thread not having its own stack.

Appeal 2007-2127
Reexamination Control No. 90/006,621

92

Second, "[a]ssertions of technical facts in areas of esoteric technology must

always be supported by citation to some reference work recognized as

standard in the pertinent art" In re Ahlert, 424 F.2d 1088, 1091,

165 USPQ 418, 420 (CCPA 1970); accord In re Pardo, 684 F.2d 912, 917,

214 USPQ 673, 677 (CCPA 1982). The references cited, Exhibits 5 and 56,

mention "stacks," and saving data in a stack during a subroutine call, but not

that such stack is provided when the program is compiled. Exhibit 57 seems

to just mention stacks. Third, we do not think stacks are provided for when

the program "is compiled." The operating system puts information on a

stack when a subroutine call "is executed."

 e. Arguments about 1991 application not considered

 Patent Owner's arguments about the Board's decision in the 1991

application, Application 711,957, the Director's Brief on Appeal in the 1991

application, and Microsoft's amicus brief to the Federal Circuit in the 1991

application (Reply Br. 1, 4-7, 10, 13-15, and 17-21; Supp. Reply Br. 1-8) are

not considered, except for three points, since there are already more than

enough arguments to address in this case. First, the Board found no written

description support for "multithreading" in the 1991 application or in any of

the ancestor applications. This decision was affirmed on appeal in In re

Reiffin. Second, the fact that the Board noted that the interrupt embodiment

described in the "Detailed Description" is entitled to the benefit of the 1982

filing date does not imply that "multithreading" is supported by the

"Detailed Description," as evidenced by the written description rejection in

that case. Third, the reason the Board did not have to enter a new ground of

rejection over the OS/2 references because it was not necessary to do so in

Appeal 2007-2127
Reexamination Control No. 90/006,621

93

view of the written description rejection. Since § 112 issues cannot be

raised in a reexamination based on "multithreading" limitations found in the

original patent claims, a prior art rejection is required in this case.

 f. Effective date for "multithreading" is not 1982

 Patent Owner argues that the date for determining the meaning of

"multithreading" is 1982 (Supp. Reply Br. 2-3). We disagree. Patent Owner

did not add the term "multithreading" until after the 1990 application was

filed and stated during the prosecution that the term had is ordinary meaning

in the art, which must be at the time the 1990 application was filed. The

amendments to the 1990 application do not get the benefit of the 1982 date.

ANTICIPATION

 Krantz

 Patent Owner argues that Krantz, OS/2: Features, Functions and

Applications is not prior art, but does not contest that Krantz anticipates if it

is prior art (Br. 75): "[T]he claims in reexamination are each entitled to the

September 28, 1982 priority date of the 1982 application. Therefore, the

OS/2 reference, published no earlier than 1988, is not prior art to the claims,

and so can not be the basis for the rejection."

 We found that the '604 patent is not entitled to the benefit of filing

dates of its ancestor applications as to "threads" and "multithreading," so

Krantz is valid prior art. Accordingly, the rejection of claims 1-38, 44-47,

50, 57-60, 68-72, 75, and 80-83 under 35 U.S.C. § 102(b) as being

anticipated by Krantz is affirmed.

Appeal 2007-2127
Reexamination Control No. 90/006,621

94

 Since Patent Owner does not contest the merits of the anticipation

rejection over Krantz, it is not necessary to reach the alternative rejections

over Duncan, Advanced OS/2 Programming; Microsoft Operating System/2

Programmer's Reference; Young, Programmer's Guide to OS/2; and Letwin,

Inside OS/2 stated in the Examiner's Answer 125-26.

 De Jong

 Issue

 Does De Jong anticipate claims to "multithreading"?

 Principles of law

 "Anticipation requires the presence in a single prior art disclosure of

all elements of a claimed invention arranged as in the claim. A prior art

disclosure that 'almost' meets that standard may render the claim invalid

under § 103; it does not 'anticipate.'" Connell v. Sears, Roebuck & Co.,

722 F.2d 1542, 1548, 220 USPQ 193, 198 (Fed. Cir. 1983).

 Facts

1. The rejection relies on the program to transmit Morse code in

De Jong, primarily at pages 265-282, although De Jong notes that certain

subroutines are described in previous chapters (page 273), and pages 174,

181 and 235-44 are also relevant.

2. De Jong states that "[a]lthough this [Morse code] program is of

particular interest to amateur radio operators, the programming techniques

that it illustrates can be applied in a large number of applications"

(page 181).

Appeal 2007-2127
Reexamination Control No. 90/006,621

95

3. The Morse code program translates ASCII characters input via a

keyboard into Morse code dots, dashes, and spaces (pages 265-268).

4. Code is entered into a buffer "by typing letters, numbers, or

punctuations [sic] marks from the Apple keyboard" (page 268), the program

reads the characters in the buffer, and "[t]he program outputs each character

in Morse code" (page 268).

5. "A 256-character buffer allows typing faster than the Morse code is

sent." (Page 268.)

6. "The backspace (←) key on the Apple allows characters to be deleted.

The cursor points to the location of the next character to be entered in the

character string." (Page 268.)

7. The parts of the program are described as follows (pages 268-69):

 The program to transmit Morse code is divided into three parts:

• A set of subroutines including a timing loop, a send subroutine that
does the actual conversion of ASCII to Morse code, and a subroutine
to calculate the parameters for the code speed.

• An interrupt routine that scans the keyboard for a key depression. If
an alphanumeric character is entered then it is stored in the buffer. If
a control character is entered, the appropriate action is taken or the
character is ignored.

• A main program that calls the subroutines. It main function is to scan
the buffer to see if a character is to be sent. It will send characters
until the buffer is empty.

8. The interrupt routine is described as follows (page 275):

 The principal function of the interrupt routine is to read the Apple

keyboard. Why use interrupts for this purpose? The main task of the
microcomputer is to send the Morse code characters. If the computer
must wait for a key to be pressed before sending a character, then you

Appeal 2007-2127
Reexamination Control No. 90/006,621

96

can only input the characters from the keyboard as fast as they are to
be sent. On the other hand, in the interrupt mode, the microcomputer
continues to send code and you can type ahead. The interrupt routine
takes so little time that fetching a character and storing it in the buffer
cannot be discerned in listening to the Morse code character string.

9. The interrupt is a clock-activated interrupt, but a keyboard-activated

interrupt is also disclosed (page 278):

 Ideally one would use the keyboard strobe itself to produce one

interrupt whenever a key was pressed. Because this strobe is not very
accessible, we have chosen to use the 6522 T1 timer in its free-
running mode to generate IRQ¯¯¯ -type interrupts every 65,537 clock
cycles. . . . For most people the 65,537 clock cycles between
interrupts will produce a rapid enough interrupt rate.

10. The 6522 T1 timer produce continuous interrupts by repeatedly

counting down the number stored in the T1 interval timer at the system clock

rate of 1.023 MHz (pages 235-244), so 65,537 clock cycles takes about

0.064 seconds or 64 milliseconds.

11. In normal operation the Morse code translation main program is

continuously executed by the CPU, taking characters from the buffer and

outputting them as Morse code (Figure 10-3, page 279).

12. A clock periodically interrupts the main program frequently enough to

appear that the interrupt routine and the Morse code program are operating

simultaneously (page 278).

13. The interrupt service routine saves the registers ("Save the Registers"

block, Figure 10-2, page 277) and checks for a new input character from the

keyboard ("Key Pressed?" decision block, Figure 10-2).

Appeal 2007-2127
Reexamination Control No. 90/006,621

97

14. If no new character is found at the keyboard input, the routine restores

the registers and returns to executing the main program ("Restore the

Registers" and "RTI" blocks, Figure 10-2).

15. If a new character is found at the keyboard input, alphanumeric

characters are put into the buffer ("Place in Ring Buffer," Figure 10-2) and

control characters are handled by a special routine for that character

("Control Character Routines," Figure 10-2).

16. One of the control codes in the interrupt service routine is the delete

key to delete the last character in the buffer (page 276, program lines 39-47).

17. After the interrupt routine enters the character in the buffer or handles

a control character, the CPU returns to executing the Morse code program

where it was interrupted ("RTI" block, Figure 10-2).

18. The Morse code routine continues execution on code in the buffer

until the next interruption.

19. The main Morse code program and the interrupt service routine in

De Jong are separate programs at different locations in memory, as

illustrated by the diagram of an interrupt request (Chart 7-2, page 174).

 Analysis

 If the '604 patent discloses "multithreading," then De Jong also

discloses "multithreading" because it operates in the identical manner.

However, based on our claim interpretation, we will reverse the rejection

because De Jong does not disclose "multithreading" for the same reasons the

1982 application and '603 patent do not disclose "multithreading."

 De Jong teaches a keyboard- and timer-activated interrupt system that

operates identically to the keyboard- and timer-activated interrupt system in

Appeal 2007-2127
Reexamination Control No. 90/006,621

98

Patent Owner's '604 patent. In both De Jong and the '604 patent, a

keyboard- or timer-activated interrupt (Finding 9) interrupts a continuously

executing main program to pass control to an interrupt service routine, the

interrupt service routine saves the registers, gets input characters from the

keyboard and either puts them into a buffer (for alphanumeric characters) or

performs a control character routine (for control characters), restores the

registers and returns control to the main program (compare Figures 3a, 5,

and 6 of the '604 patent to Figure 10-2 of De Jong) (Findings 11-18). The

differences between the '604 patent's disclosed invention and De Jong are

that the main program in De Jong is a Morse code program and not a

compiler, and the interrupt service routine in De Jong has very limited

editing functions (it only allows deletion of characters at the end of the

buffer) and does not keep track of a compiler's progress. However, none of

the original '604 patent claims recited the functions of the main program or

the interrupt service routine as being compiler and editor. Patent Owner

does not dispute that De Jong teaches two "threads" in a "multithreading"

system in the same sense as the editor and compiler in the '604 patent.

 Patent Owner submitted a substitute amendment in the reexamination

on April 30, 2004, to change "thread" to "processing thread " in independent

claims 1, 6, 18, 24, and 26, and to change "instruction thread" to "processing

instruction thread" in claim 4 and 14. Original claims 10 and 17, which

were not amended, recite "threads for processing said body of data code."

Patent Owner states (Br. 47) that "Processing is the vital step between

receiving data (input) and producing results (output)—the task for which

computers are designed," Microsoft Computer Dictionary (Microsoft Press

Appeal 2007-2127
Reexamination Control No. 90/006,621

99

1991). Patent Owner interprets "processing" to include only operations

performed on data after it is stored in the memory and before it is output.

 Patent Owner seeks to distinguish the claimed invention over De Jong

by arguing that the interrupt routine in De Jong is not a processing thread

because it does not process data after it has been input (Br. 47-48). We

disagree. First, "processing" encompasses any operations performed by the

processor, including the input and output of data to and from the memory.

Nothing in the definition requires that processing occurs only on data after it

is put in the memory. The interrupt routine in De Jong performs processing

to read data from the keyboard and store it in the buffer. Second, even if the

term "processing" is interpreted to be limited to operating on data in the

buffer, the "delete" function in the interrupt routine in De Jong operates in

response to the "backspace" key to delete the last character in the buffer

(Findings 6 and 16). Thus, the interrupt routine "processes" data stored in

the buffer. That the character data is only stored temporarily in the buffer

and disappears after the character is sent does not preclude the interrupt

service routine from "processing" data while it is in the buffer.

 If "multithreading" in the '604 patent claims was interpreted to read on

the disclosed embodiment, rather than being given its ordinary meaning in

the art, then De Jong would anticipate many claims. However, rather than

create more work for our reviewing court by a "backup" rejection relying on

an alternative claim interpretation, we rely on our claim interpretation and

conclude that De Jong is not a "multithreading" system for the same reasons

discussed in the priority determination: (1) the interrupt service routine is not

interruptible and its context is not stored, so it is not a thread, and there are

not multiple threads; (2) even if the interrupt service routine was

Appeal 2007-2127
Reexamination Control No. 90/006,621

100

interruptible, it would not return control to the main Morse code program as

required for multithreading, but would invoke another interrupt routine;

(3) the interrupt service routine and the Morse code program do not execute

concurrently, because the Morse code program always halts completely until

the interrupt routine is finished; (4) the interrupt service routine and the

Morse code program are not in the same program but are separate programs

at different locations in memory (Finding 19); and (5) the interrupt routine

does not have the other attributes of a thread. The rejection of claims 1-38,

44-47, 50, 57-60, 68-72, 75, and 80-83 over De Jong is reversed.

OBVIOUSNESS

 Krantz and Nitta

 Issue

 The obviousness analysis in the Examiner's Answer only refers to the

teachings of Krantz and Nitta, although the statement of the rejection refers

to four other OS/2 references. We limit the analysis to Krantz and Nitta.

 The issue is whether the claimed subject matter would have been

obvious to one skilled in the art at the time of the invention in 1994 under

35 U.S.C. § 103(a) over the combination of Krantz and Nitta.

 Principles of law

 The four underlying factual inquiries of obviousness are: (1) the scope

and content of the prior art; (2) the differences between the claims and the

prior art; (3) the level of ordinary skill in the pertinent art; and (4) secondary

considerations. Graham v. John Deere Co., 383 U.S. 1, 17-18,

148 USPQ 459, 467 (1966).

Appeal 2007-2127
Reexamination Control No. 90/006,621

101

 "The scope of the prior art has been defined as that 'reasonably

pertinent to the particular problem with which the inventor was involved'."

Stratoflex, Inc. v. Aeroquip Corp., 713 F.2d 1530, 1535, 218 USPQ 871, 876

(Fed. Cir. 1983).

 The level of ordinary skill in the art is evidenced by the references.

See In re Oelrich, 579 F.2d 86, 91, 198 USPQ 210, 214 (CCPA 1978) ("the

PTO usually must evaluate both the scope and content of the prior art and

the level of ordinary skill solely on the cold words of the literature");

In re GPAC Inc., 57 F.3d 1573, 1579, 35 USPQ2d 1116, 1121 (Fed. Cir.

1995) (the Board did not err in adopting the approach that the level of skill

in the art was best determined by the references of record).

 Objective evidence of nonobviousness (also called "secondary

considerations") must always be considered in making an obviousness

decision, Stratoflex, 713 F.2d at 1538-39, 218 USPQ at 879, although it need

not be necessarily conclusive, Ashland Oil, Inc. v. Delta Resins & Refrac.,

Inc., 776 F.2d 281, 306, 227 USPQ 657, 674 (Fed. Cir. 1985).

 Facts

 1. Scope of prior art

1. It is not contested that Krantz and Nitta are analogous art.

 2. Content of Krantz

2. Krantz discloses that the basic unit of work in OS/2 is called a

"thread" and "[e]ach process can consist of one or more threads" (page 16).

Appeal 2007-2127
Reexamination Control No. 90/006,621

102

3. Krantz discloses that OS/2 is multitasking (pages 58-59):

 In a multitasking environment, an application does not have to

execute tasks one at a time or synchronously. Instead, the application
can have more than one task active at a time. It can have one task
reading the keyboard and another task reading data from the disk.
While data from the disk is still waiting to be read in, the application
can be using the processor to get input from the keyboard and do
whatever is needed. Because timing relationship between all the tasks
is not known at every point in time, the tasks are said to be executing
asynchronously.

4. OS/2 can multitask "sessions, processes, and threads" (page 59).

5. Krantz discloses: "The application that is currently receiving keyboard

input and displaying data on the screen is called the foreground session.

The rest of the programs in the OS/2 system are called background

sessions." (Page 59.)

6. Krantz discloses (page 63):

 A process owns "units of execution." A unit of execution is

called a thread. It can be thought of as a series of program
instructions that are executed one after another. We can equate an
application in the DOS environment to a single thread of execution
because the entire program executes synchronously from beginning to
end. In the DOS environment, there can never be two sets of program
instructions being executed 'at the same time' or asynchronously. In
OS/2, all the sets of program instructions that execute independently
of one another (asynchronously) are called threads.

7. Krantz discloses (page 64):

 When two threads are executing asynchronously to each other,

it means that each thread does not know what the other thread is
currently doing. For example, one thread of a process could be
reading from the keyboard and writing to the display and another
thread of the same process could be reading from a file and writing to

Appeal 2007-2127
Reexamination Control No. 90/006,621

103

the display. The ability to have multiple threads of execution is very
valuable because it allows a process to continue doing useful work
even though it may also be waiting for another part of the system to
complete a request.

8. "Even though a process is the entity in OS/2 that owns system

resources, the system still needs to keep track of certain things on a per

thread basis" (page 64) including thread ID, stack, processor registers,

dispatch state, and priority.

9. A thread can create and start a new thread that belongs to the same

process using a "DosCreateThread" instruction (pages 67-68).

10. Krantz discloses (page 68):

 If multiple threads have the same priority, then OS/2 will

timeslice between the threads. When timeslicing, the operating
system allows each thread to execute a specified amount of time. The
is called round robin scheduling, and it allows multiple threads that
have the same priority to share the processor fairly.

 3. Content of Nitta

11. Nitta discloses "a method for automatic translation between natural

languages, and more particularly to a method for automatically translating

English sentences into Japanese sentences" (col. 1, lines 7-10).

12. Nitta is a complex reference, but the main steps of the method are

summarized as follows (col. 3, lines 20-55):

 First, an English text is read in and it is written in an input data
buffer storage (text input processing). Next, a lexicon is looked up to
convert words in the text having inflection such as conjugation, plural
inflection and degree inflection to stems (dictionary look-up). Then, a
string of words and idioms in the text is converted to the
corresponding string of parts of speech (part of speech analysis).
Then, the sentence converted to the string of parts of speech is divided

Appeal 2007-2127
Reexamination Control No. 90/006,621

104

into minimum units with linguistic meaning, that is, phrasal elements,
such as a sequence of nouns, auxiliary verb+verb, article+noun,
preposition+noun, and adjective+noun (phrase structure analysis).
Each of the phrasal elements is then replaced by a phrasal part of
speech such as noun phrase, adjective phrase, adverbial phrase, verb
phrase or prepositional phrase. Then, the lexicon is again looked up.
Next, the string of phasal parts of speech is converted to a string of
syntatic roles such as subject, governer, direct object, word
complement and adverbial modifier. From the string of syntatic roles,
a simple sentence pattern, a clausal pattern and a syntatic unit (quasi-
clausal pattern) having a syntatically closed subject-predicate relation
are searched (English sentence pattern analysis).

 Then, a phrasal element, such as a prepositional phrase or an

adverbial phrase, is assigned modifying or dependency relation, that
is, what noun phrase or verb phrase it modifies or relates to
(dependency and modifying relation analysis).

 Next, the analyzed English sentence patterns are converted to

Japanese sentence frame patterns by referring to conversion rules
predetermined for each pattern (tree/list transformation). Finally, the
word lexicon and the idiom lexicon are looked up to generate a
Japanese sentence which is an output sentence (Japanese sentence
generation).

13. Nitta states that "the unknown words are regarded as the proper nouns

for the sake of simplicity" (col. 12, lines 17-19).

 4. Differences

 Krantz does not disclose:

14. "Spelling checking" as in claims 39, 48, 52, 53, 63, 65, 66, 73, and 76.

15. "Grammar checking" as recited in claims 67, 74, and 77.

16. "Spelling and grammar checking" as in claims 40, 49, 54, and 55.

Appeal 2007-2127
Reexamination Control No. 90/006,621

105

17. Emitting an "error message" upon detection of an error as recited in

claims 40, 43, 49, 55, 56, and 61.

18. "Control procedures including cursor movement, screen scroll and

line deletion" as in claims 41, 42, and 51.

19. Checking code or words "for conformity" with the language as recited

in claims 51 and 61.

20. "Lexical and syntactic analyses for parsing the words of English

sentences" as recited in claim 62.

21. "Syntactic analyzer thread to determine whether said identifiers are

interrelated in accordance with predetermined rules of grammar" as recited

in claim 64.

22. Instructions "to form input data code" into groups or words as recited

in claims 78 and 79.

 5. Level of skill in the art

23. The relevant level of ordinary skill in the art is determined as of the

filing date of the 1994 application.

24. The level of ordinary skill in the art related to "multithreading" is

evidenced by Krantz, OS/2: Features, Functions and Applications.

25. Krantz evidences that persons of ordinary skill in the art were familiar

with "multithreading" operating systems such as OS/2, were familiar with

the principles, operation, and advantages of multithreading, and knew how

to write multithreaded programs.

Appeal 2007-2127
Reexamination Control No. 90/006,621

106

 6. Objective evidence

 Patent Owner cites the following references as objective evidence of

long-felt need, failure of others, and commercial success (Br. 73-75):

26. In 1987, Microsoft Word had a spelling checking function which did

not execute concurrently with the editing function, but instead required the

user to invoke the spelling checking operation manually. Paul Hoffman,

Microsoft Word Made Easy (2d ed. Osborne McGraw-Hill 1987),

pages 285-288 (Exhibit 23).

27. In 1988, Microsoft Word still required the user to manually invoke

"the Library Spell command" to activate "spell-checking." Peter Rinearson,

Quick Reference Guide to Microsoft Word for the IBM PC (Microsoft Press

1988), pages 97-99 (Exhibit 24).

28. In 1989, Microsoft Word still required the user to manually invoke

"the Library Spell command." Janet Rampa, Learn Word Now (Microsoft

Press 1989), pages 272-74 (Exhibit 25).

29. In 1992, Microsoft Word for Windows 2 still required the user to

manually invoke the "Tools Spelling" command after selecting the text to be

checked in a document. Peter G. Aitken, 10 Minute Guide to Word for

Windows 2 (Sams 1992), pages 108-109 (Exhibit 26).

30. In 1993-1994, Microsoft Word Version 6 still required manual

invocation of the spelling checking function by checking "the Spelling

button in the Spelling dialog box." Word also had an AutoCorrect feature to

automatically "fix common mistakes, such as typing 'adn' instead of 'and.'"

Quick Results Microsoft Word Version 6.0 (Microsoft Corp. 1993-1994),

pages 68-69 (Exhibit 27).

Appeal 2007-2127
Reexamination Control No. 90/006,621

107

31. In 1994, Microsoft Word Version 6.0 provided a grammar checker

manually invoked by the user by choosing "Grammar" from the Tools menu.

"The grammar checker also checks spelling as it checks grammar." Julie

Bick et al., Microsoft Word 6.0 Resource Kit for Windows (Microsoft Press

1994), pages 166 and 391-392 (Exhibit 28).

32. In 1995, Microsoft Word for Windows 95 implemented "automatic

spell checking," which was turned on and off from the Tools Options menu.

"Now, with a single mouse click, you can have Word's spell checker running

in the background while you work, scrutinizing everything you type—while

you're typing it." Stephen L. Nelson, Field Guide to Microsoft Word for

Windows 95 (Microsoft Press 1995), pages 20, 69, and 116-117 (Exhibit 29);

Microsoft Word for Windows 96 Step by Step (Microsoft Press 1995),

pages 6-7, 39-42, and 100-103 (Exhibit 30).

33. In 1997, "Word's newest Grammar Checker offers a new feature that

can really improve your writing—grammar checking as you type. Just as

you see a wavy red line under misspelled words, you will see a wavy green

line under words or phrases that contain grammatical errors." Bill Bruck,

The Essential Office 97 Book (Prima Publishing 1997), pages 133-134

(Exhibit 31).

 Analysis

 1. Objective evidence is not entitled to any weight

 Patent Owner argues that the objective evidence establishes long-felt

need, industry praise, failure of others (Microsoft) to implement spelling and

grammar checking "as you type," and commercial success (Br. 71-75). It is

argued that "[a]fter Patent Owner's 1982 filing date of his parent application,

Appeal 2007-2127
Reexamination Control No. 90/006,621

108

it thereafter required the enormous programming skills and resources of

Microsoft Corp. thirteen (13) years to implement concurrent ('as you type')

spelling checking in 1995; and fifteen (15) years to implement concurrent

('as you type') grammar checking in 1997" (Br. 75).

 None of Patent Owner's 1982, 1985, 1990, or 1994 applications

provide any details of how to perform lexical or syntactic analysis of a

natural language, such as spelling and grammar checking. (As noted in the

written description rejection, infra, the '604 patent does not even mention the

concept of lexical or syntactic analysis of a natural language.) We do not

see how spelling and grammar checking as you type is enabled unless it is

considered wholly within knowledge of one of ordinary skill in the art, in

which case it is difficult to see how Patent Owner can argue that he solved

the problem of concurrent spelling and grammar checking. See In re Reiffin,

199 Fed. Appx. at 966-67 (affirming enablement rejection for "concurrent

lexical analysis, i.e., spell checking or grammar checking as one types").

Patent Owner is trying to cover word processing inventions that he did not

himself invent. There is no enablement rejection before us, but the

Examiner did reject the analysis claims based on lack of written description.

 If Patent Owner's contention is that somehow the bare invention of

"multithreading" is the solution that allowed Microsoft to produce spelling

and grammar checking as you type, then Patent Owner fails to explain why,

since Microsoft knew about true multithreading in 1988 when it designed

OS/2, it took seven years to provide the features in Word. The motivation

and capability for spelling checking as you type clearly existed in the art

before Patent Owner mentioned it in the 1990 application. See Nguyen,

Advanced Programmer's Guide to OS/2, page 9 (In 1989: "All of us are

Appeal 2007-2127
Reexamination Control No. 90/006,621

109

familiar with the frustration of waiting for our word processor to check the

spelling of a document, or for the computer to re-index a large database, or

re-calculate a spreadsheet. During these times we cannot continue to work.

In a multitasking system the user can continue to add text to his or her

document, while the spelling of each word is checked automatically as it is

entered."). The Heard patent also discloses generating an error message

when a misspelled word is detected as it is entered (e.g., col. 3, lines 26-33

and col. 6, lines 40-54). Patent Owner's so-called "multithreading," a

clock-activated interrupt system, was taught in De Jong before 1982 filing

date, so clearly more than just the knowledge of an interrupt driven system

was required for successful spelling and grammar checking as you type.

Patent Owner fails to establish a nexus between the spelling and grammar

checking in the Microsoft Word program and his disclosed invention. The

evidence is entitled to no weight in the obviousness determination.

 2. Spelling and grammar checking

 Krantz does not disclose "spelling checking" (Finding 14), "grammar

checking" (Finding 15), or "spelling and grammar checking" (Finding 16).

 The Examiner finds that Nitta discloses spelling checking because

words are looked up in a lexicon (Final Rejection 139) and discloses

grammar checking because English grammar and English sentences are

mentioned at column 34 (Final Rejection 140). The Examiner concludes

that it would have been obvious to provide spelling and grammar checking

in a multithreaded system as taught by Krantz because it would be beneficial

to use one thread to do the editing and another thread to do spelling or

grammar checking "because it allows a process to continue doing useful

Appeal 2007-2127
Reexamination Control No. 90/006,621

110

work even though it may also be waiting for another part of the system to

complete a request" (Final Rejection 139).

 Patent Owner argues that "Nitta has no concept of detecting errors in

spelling or grammar" (Br. 77) because a spelling error would be treated as a

proper noun (Br. 77).

 We interpret spelling and grammar "checking" to have its ordinary

meaning of inspecting for accuracy or errors in spelling and grammar. Nitta

does not check for correctness of spelling or grammar in the English text.

The lexicon or dictionary is used to determine word stems, by dictionary

look-up (Finding 12), and is not used to determine if the words have been

spelled correctly. If a word is misspelled, "the unknown words are regarded

as the proper nouns for the sake of simplicity" (Finding 13). Similarly,

while Nitta analyzes the grammar preparatory to translating it into another

language (Finding 12), it does not determine whether there are errors in the

English grammar. Thus, Nitta does not disclose "spelling checking,"

"grammar checking," "spelling and grammar checking," and checking code

or words "for conformity" with the language. Accordingly, the rejection of

claims 39, 40, 48, 49, 52-55, 63, 65-67, 73, 74, 76, and 77 is reversed.

 3. Error message

 Krantz does not disclose emitting an "error message" upon detection

of an error (Finding 17). The Examiner finds that Nitta discloses that "if a

wrong part of speech is tentatively selected and the resulting string of parts

of speech happens to be equal to the pattern registered in the dictionary, a

wrong translation will be carried out" (col. 2, lines 22-26). The Examiner

concludes that "[i]t would have been obvious to a person of ordinary skill in

Appeal 2007-2127
Reexamination Control No. 90/006,621

111

the art at the time the invention was made to have immediately emitted an

error message upon determination of an error condition because of Nitta

taught that using a dictionary for comparison of the different part of speech

pattern" (Final Rejection 141 ¶ VIII.4).

 Patent Owner does not mention Nitta in connection with the rejection

of error messages in the obviousness rejection over OS/2 and Nitta.

However, Patent Owner argues in connection with the obviousness rejection

over De Jong and Nitta that the Examiner implicitly recognizes that Nitta

does not disclose generation of error messages and "[t]he Examiner

conclusorily states that generation of an error message would be obvious,

notwithstanding that Nitta omits such a feature" (Br. 70 n.15) and that such

rejection should be withdrawn. Patent Owner argues that Nitta is less

pertinent than Heard because "[i]n Heard, the spelling checking operation is

performed as the words are being typed, generating an error signal when an

error is encountered, allowing the typist to correct the error" (Br. 69).

 Nitta does not disclose checking spelling and grammar for correctness

and, thus, has no need for error messages. The portion of Nitta pointed out

by the Examiner refers to a prior art problem where selection of a wrong part

of speech by a translation program leads to a wrong translation. However,

this is not the kind of error that would be detectable, much less correctable

by a user, so there is need to notify the user by an error message. We agree

with Patent Owner that Heard is a better reference for the error message

limitations because Heard expressly discloses generating an error message

when a misspelled word is detected (e.g., col. 3, lines 26-33 and col. 6,

lines 40-54). However, Heard is not applied in the rejection. Since Nitta

Appeal 2007-2127
Reexamination Control No. 90/006,621

112

does not disclose or suggest emitting an "error message" upon detection of

an error, the rejection of claims 40, 43, 49, 55, 56, and 61 is reversed.

 4. Cursor movement, screen scroll, and line deletion

 Krantz does not expressly disclose "control procedures including

cursor movement, screen scroll and line deletion" (Finding 18). The

Examiner finds (Final Rejection 141-42 ¶ VIII.6) that Krantz discloses that a

background application can be running "while the user has a text editor in

the foreground where a memo is being typed in" (page 15) and "[t]he user

could then type in the needed information while the program is actually

executing" (page 20). Although not expressly stated, the rejection implies

that it would have been obvious to provide "cursor movement, screen scroll

and line deletion" in the text editor of Krantz because these were well-

known text editor features.

 We do not find where Patent Owner addresses this limitation. We

conclude that one of ordinary skill in the art would have been motivated to

provide "cursor movement, screen scroll and line deletion" as part of a text

editor in Krantz because these features were common and well-known text

editor features. The objective evidence has been considered supra, and is

entitled to no weight. In addition, the objective evidence dealing with

spelling and grammar checking has nothing to do with the text editor

limitations. The rejection of claims 41, 42, and 51 is affirmed.

 5. General lexical and syntactic analysis

 Krantz does not disclose checking code or words "for conformity"

with the language (Finding 19), "lexical and syntactic analyses for parsing

Appeal 2007-2127
Reexamination Control No. 90/006,621

113

the words of English sentences" (Finding 20), a "syntactic analyzer thread to

determine whether said identifiers are interrelated in accordance with

predetermined rules of grammar" (Finding 21), or instructions "to form input

data code" into groups or words (Finding 22). These limitations are broader

than the limitations for lexical and syntactic analyses to perform "spelling

checking" and "grammar checking," as addressed supra, because they do not

specify what specific kinds of lexical and syntactic analyses are performed.

 The Examiner finds that Nitta discloses lexical and syntactic analyses

of English sentences and, in particular, spelling checking and grammar

checking (Final Rejection 139-141 ¶¶ VIII.2 & VIII.3). The Examiner

concludes that it would have been obvious to combine the teachings of OS/2

and Nitta to provide lexical and syntactic analyses because OS/2 teaches a

system that allows threads to perform two disparate functions and "it would

be beneficial to use one thread of OS/2 [to] do the editing on the input file

and another to do the speller checking functions of Nitta (dictionary

look-up) because it allows a process to continue doing useful work even

though it may also be waiting for another part of the system to complete a

request (See OS/2, page 64, first par, after the partial par.)" (Final

Rejection 139 ¶ VIII.2; Answer 155).

 Patent Owner argues that there is no suggestion in the art to make the

combination (Br. 76). It is argued that the Examiner's statement that it

would be beneficial to use one processor to perform two disparate functions

for the advantage of allowing an operator to correct improper spelling while

the operator is still entering the code is based on hindsight (Br. 76). It is

argued that the Examiner does not identify what code entry operation in the

Appeal 2007-2127
Reexamination Control No. 90/006,621

114

Krantz reference "would supposedly be improved by the addition of spelling

checking" (Br. 76).

 We disagree. Krantz discloses that one thread of a multithreaded

program can be reading from the keyboard while another thread is doing

something else (page 64) and "[t]he ability to have multiple threads of

execution is very valuable because it allows a process to continue doing

useful work even though it may also be waiting for another part of the

system to complete a request" (page 64). Therefore, Krantz provides

express motivation to provide two concurrent threads of execution.

 Nitta discloses that "a lexicon is looked up to convert words in the text

. . . to stems (dictionary look-up). Then, a string of words and idioms in the

text is converted to the corresponding string of parts of speech (part of

speech analysis)." (Col. 3, lines 21-27.) Nitta identifies words of the

sentence and, thus, discloses a lexical analyzer "for parsing the words of

English sentences" as recited in claim 62 and inherently has instructions "to

form input data code" into groups or words as recited in claims 78 and 79.

Nitta further discloses that "the sentence converted to the string of parts of

speech is divided into minimum units with linguistic meaning," "[e]ach of

the phrasal elements is then replaced by a phrasal part of speech," "the string

of phasal parts of speech is converted to a string of syntatic roles," "[f]rom

the string of syntatic roles, a simple sentence pattern . . . having a

syntatically closed subject-predicate relation are searched (English sentence

pattern analysis)" (col. 3, lines 27-43). Thus, Nitta discloses a syntactic

analyzer "for parsing the words of English sentences" as in claim 62 and a

"syntactic analyzer . . to determine whether said identifiers are interrelated

in accordance with predetermined rules of grammar" as recited in claim 64.

Appeal 2007-2127
Reexamination Control No. 90/006,621

115

 One of ordinary skill in the art would have been motivated to

implement the lexical and syntactic analyzers in Nitta as a thread or threads

of a multithreaded program, for the known advantages of multithreading,

such as allowing the system to do useful work while waiting for input from

the operator. Where a new programming paradigm comes along, such as

multithreading, one of ordinary skill in the art would be expected to apply

these new techniques to old programs as a matter of routine.

 Patent Owner argues that nothing about Nitta lends itself to the

concurrent operation of the claims because "Nitta is simply a sequential

batch process, taking text in one language, that was previously entered into

memory, and translating it into another language" (Br. 76-77).

 Again, one of ordinary skill in the programming art would have been

motivated to apply multithreading to older, non-multithreaded programs, for

the known advantages of multithreading. Krantz indicates that writing

multithreaded programs is within the level of ordinary skill in the art.

 Patent Owner argues that Krantz teaches away from the claimed

combination at pages 98-114 because "[t]he OS/2 reference cautions against

using two threads that actually process data in the same process—let alone

incorporate the complexity of spelling or grammar checking—because of the

concern that the two threads might interact in some unexpected, and possibly

destructive, way" (Br. 77).

 A reference "teaches away" when it states that something cannot be

done. See In re Gurley, 27 F.3d 551, 553, 31 USPQ2d 1130, 1131 (Fed. Cir.

1994). Krantz only indicates that programs should be designed to avoid

destructive interference between threads, but does not state that multiple

threads should not be used. This is not a teaching away.

Appeal 2007-2127
Reexamination Control No. 90/006,621

116

 For the reasons stated above, the rejection of claims 51, 78, and 79 is

affirmed. The rejection of claims 61, 62, and 64 is reversed because these

claims have either already been reversed or because they depend on a

reversed claim.

 6. Summary

 The obviousness rejection of claims 41, 42, 51, 78, and 79 is affirmed.

 The obviousness rejection of claims 39, 40, 43, 48, 49, 52-56, 61-67,

73, 74, 76, and 77 is reversed.

 De Jong and Nitta or Heard

 The anticipation rejection over De Jong was reversed because De Jong

does not disclose "multithreading." Nitta and Heard do not disclose

"multithreading" and cannot cure the deficiencies of De Jong. Accordingly,

the rejections of claims 39-43, 48, 49, 51-56, 61-67, 73, 74, and 76-79 over

De Jong and either Nitta or Heard are reversed.

WRITTEN DESCRIPTION

1.

 Preliminary issue

 A preliminary issue is whether the '604 patent can be amended to add

and claim subject matter which was disclosed in the parent 1990 application,

but which was omitted in the 1994 application which became the '604

patent, assuming there is no inherent support for it in the '604 patent.

Appeal 2007-2127
Reexamination Control No. 90/006,621

117

 Principles of law

 "In order to gain the benefit of the filing date of an earlier application

under 35 U.S.C. § 120, each application in the chain leading back to the

earlier application must comply with the written description requirement."

Lockwood v. American Airlines, Inc., 107 F.3d 1565, 1572,

41 USPQ2d 1961, 1968 (Fed. Cir. 1997) (citing In re Hogan, 559 F.2d 595,

609, 194 USPQ 527, 540 (CCPA 1977); In re Schneider, 481 F.2d 1350,

1356, 179 USPQ 46, 50 (CCPA 1973) ("[T]here has to be a continuous

chain of copending applications each of which satisfies the requirements of

§ 112 with respect to the subject matter presently claimed. There must be

continuing disclosure through the chain of applications, without hiatus, to

ultimately secure the benefit of the earliest filing date." (citation omitted)).

That is, there may be break in disclosure of continuing applications.

 "[T]he statement that an application is a continuation-in-part, or a

continuation, or a division . . . is not an incorporation of anything therein

into the application containing such reference for the purposes of the

disclosure required by 35 U.S.C. 112. Likewise it does not serve to bring a

disclosure within the requirements of 35 U.S.C. 120 so as to give a later

application the benefit of the filing date of an earlier application. The later

application must itself contain the necessary disclosure." In re de Seversky,

474 F.2d 671, 674, 177 USPQ 144, 146-47 (CCPA 1973). Section 120 does

not operate to carry forward subject matter from an earlier application. Cf.

Dart Industries, Inc. v. Banner, 636 F.2d 684, 688, 207 USPQ 273, 276

(D.C. Cir. 1980) (new matter in reissue):

 Section 120 merely provides a mechanism whereby an application
becomes entitled to benefit of the filing date of an earlier application

Appeal 2007-2127
Reexamination Control No. 90/006,621

118

disclosing the same subject matter. Common subject matter must be
disclosed, in both applications, either specifically or by an express
incorporation-by-reference of prior disclosed subject matter. Nothing
in section 120 itself operates to carry forward any disclosure from an
earlier application. In re de Seversky, supra at 674, 177 USPQ at
146-47. Section 120 contains no magical disclosure-augmenting
powers able to pierce new matter barriers. It cannot, therefore "limit"
the absolute and express prohibition against new matter contained in
section 251.

 Facts

1. The 1982 and 1985 applications and the '603 patent (1990 application)

state that "[l]exical analysis is performed by a 'scanner' and is the process of

forming a sequence of source code bytes into meaningful symbols or tokens,

somewhat like forming a sequence of characters into English words" (1982

application, page 1; 1985 application, page 2; '603 patent, col. 3, lines 1-5)

and that "[t]hese [lexical and syntactic] analyses are very much like parsing

the words of an English sentence" (1982 application, page 1; 1985

application, page 2; '603 patent, col. 3, lines 13-14).

2. The two preceding statements are omitted in the 1994 application.

3. The 1990 application added disclosure not found in the 1982 and 1985

applications that the code being entered or edited at the keyboard "may

constitute either a formal or a natural language" ('603 patent, Abstract).

4. The 1990 application also added disclosure not found in the 1982 and

1985 applications that stated (now at '603 patent, col. 2, lines 31-55):

 The language or other alphanumeric code processed by the

present invention may be either a natural language such as English, or
a formal language such as a programming language, or the numbers
and strings of a spreadsheet or database. Both natural and formal
languages are generally written in the same ASCII code, and the

Appeal 2007-2127
Reexamination Control No. 90/006,621

119

methods of lexical and syntactic analysis and the mode of operation of
the present invention are substantially the same for both natural and
formal languages. Spreadsheet and database entries are also generally
entered in ASCII code or the equivalent binary code. For purposes of
illustration of the structure and operation of the present invention the
disclosed embodiment is shown and described herein as a processor of
a formal language; that is, a compiler of a programming language.
However, it will be understood that substantially the same structure,
operation, and lexical and syntactic analyses may be employed to
process the code of a natural language, such as, for example, by
utilizing lexical analysis to determine correct spelling and/or syntactic
analysis to determine correct grammar of the natural language code
being entered by an editor or word processor, or to process the code of
a spreadsheet or database.

5. The 1990 application also added disclosure not found in the 1982 and

1985 applications that stated (now at '603 patent, col. 3, lines 48-61):

 It will be obvious to those skilled in the computer arts that the

same or equivalent hardware and software may be employed to
perform lexical and syntactic analysis of natural language code, or to
calculate the numeric code of a spreadsheet, concurrently in real time
as the user enters or edits such code at the keyboard.

6. The added disclosures in the 1990 application were omitted from the

1994 application, as filed, and in the issued '604 patent.

7. The '604 patent states that it is a continuation of the 1990 application,

which is said to be a continuation of the 1985 and 1982 applications

(col. 1, lines 6-15).

8. The '604 patent does not incorporate the 1990, 1885, or 1982

applications by reference.

Appeal 2007-2127
Reexamination Control No. 90/006,621

120

9. Patent Owner filed an amendment on July 24, 2003, in this

reexamination proceeding to amend the '604 patent add the following:

 As first disclosed in said prior application Serial No. 425,612

filed September 28, 1982, and then disclosed again in said prior
application Serial No. 719,507 filed April 3, 1985, and then disclosed
again in said prior application Serial No. 496,282, filed March 20,
1990, now Patent No. 5,694,603: In addition to translation, the
compiler must also perform lexical, syntactic and semantic analyses of
the source code. Lexical analysis is performed by a "scanner" and is
the process of grouping a sequence of source code bytes into symbols
or tokens and determining their correctness, somewhat like grouping a
sequence of characters into English words. If the sequence of bytes
does not constitute a properly spelled symbol an error message is
emitted. These symbols are then subjected to the syntactic analysis by
a "parser" which determines if they are arranged in a relation which
conforms to the rigid grammatical rules of the programming language.
The semantic analysis determines if the symbols conform to
additional rules which cannot be conveniently expressed by the
language grammar. These analyses are very much like parsing the
words of an English sentence. If the sequence of symbols violates a
syntactic or semantic rule an "error" is said to have been committed
and the compiler must so inform the programmer by emitting a visible
error message.

 As disclosed in said prior copending application Ser. No.

496,282 filed March 20, 1990: The language or other alphanumeric
code processed by the present invention may be either a natural
language such as English, or a formal language such as a
programming language, or the numbers and strings of a spreadsheet or
database. Both natural and formal languages are generally written in
the same ASCII code, and the methods of lexical and syntactic
analysis and the mode of operation of the present invention are
substantially the same for both natural and formal languages.
Spreadsheet and database entries are also generally entered in ASCII
code or the equivalent binary code. For purposes of illustration of the
structure and operation of the present invention the disclosed
embodiment is shown and described herein as a processor of a formal

Appeal 2007-2127
Reexamination Control No. 90/006,621

121

language; that is, a compiler of a programming language. However, it
will be understood that substantially the same structure, operation, and
lexical and syntactic analyses may be employed to process the code of
a natural language, such as, for example, by utilizing lexical analysis
to determine correct spelling and/or syntactic analysis to determine
correct grammar of the natural language code being entered by an
editor or word processor, or to process the code of a spreadsheet or
database. The term "data" in the phrase "data code" is used to
distinguish the language code or other code being processed from the
instruction code which is executed by the central processing unit to
perform the processing.

 Similar inconveniences arise in the entry and editing of both

formal and natural language code when using editors or word
processors of the prior art. If the operator desires to check the spelling
or grammar of the language code being typed or edited the operator
must interrupt the entry or editing operation and invoke a lexical
analyzer to check the spelling or a syntactic analyzer to check the
grammar. The inconvenience is such that the checking is usually not
done until after the job is finished, so that the same errors of spelling
and grammar are repeated throughout the document being entered.

10. Patent Owner filed claims in this reexamination proceeding directed

to the data being a natural language, such as English, and spelling checking

and grammar checking the natural language. See, e.g., claim 39 and 40.

 Analysis

 The limitations about natural language and lexical and syntactic

analysis of natural language in the 1990 application (Facts 1 and 3-5) were

omitted in the 1994 application and the issued '604 patent. Assuming that

there is no inherent support for the limitations in the 1994 application, and

that adding these limitations to the '604 patent would constitute new matter

as discussed in the next issue, the lapse in disclosure cannot be cured by

Appeal 2007-2127
Reexamination Control No. 90/006,621

122

amendment. The statement that the '604 patent is a continuation of the 1990

application does not incorporate-by-reference any subject matter from the

1990 application into the '604 patent, nor does 35 U.S.C. § 120 operate to

carry forward the disclosure of the 1990 filing application. See de Seversky,

474 F.2d at 674, 177 USPQ at 146-47.

 Patent Owner could have amended the 1994 application while it was

pending to incorporate subject matter from the 1990 application. However,

by allowing the 1994 application to issue as the '604 patent without the

natural language subject matter, Patent Owner created a break in the chain of

disclosures, which cannot be cured by amendment.

 Patent Owner argues that "[t]he Federal Circuit has ruled in Litton

Sys., Inc. v. Whirlpool Corp., 728 F.2d 1423, 1438, 221 USPQ 97, 106 (Fed.

Cir. 1984), that matter in a parent application is not impermissible new

matter when added to a continuation application by amendment, and is

entitled to the filing date of the parent" (Br. 80). In particular, Patent Owner

refers to the following statement in Litton:

 If new matter added through amendment to a C-I-P application is

deemed inherent in whatever the original patent application discloses,
however, that matter is also entitled to the filing date of the original,
parent application. [Emphasis added by Patent Owner.]

Litton v. Whirlpool, 728 F.2d at 1438, 221 USPQ at 106. It is argued that

the amendment to the specification has literal, not just inherent, support in

the 1990 application that led to the '603 patent and that pursuant to

35 U.S.C. § 120, Patent Owner is entitled to amend his specification to

include language from a parent application.

Appeal 2007-2127
Reexamination Control No. 90/006,621

123

 Litton refers to adding subject matter to a pending application, not an

issued patent as in this case. Once the patent issues, the record is fixed and

new matter may not be added.

 Therefore, we conclude that Patent Owner is not entitled to amend the

'604 patent to add and claim subject matter which was disclosed in the

parent 1990 application, but which was omitted in the 1994 application.

2.

 Issue

 The issue is whether there is written description support for particular

limitations in the amended and new claims.

 Principles of law

 "Claims in an ex parte reexamination proceeding will be examined on

the basis of patents or printed publications and, with respect to subject

matter added or deleted in the reexamination proceeding, on the basis of

35 U.S.C. 112." 37 C.F.R. § 1.552(a). "[R]eexamination will be conducted

will be conducted according to the procedures of sections 132 and 133 of

this title." 35 U.S.C. § 305. New matter is prohibited by 35 U.S.C. § 132.

See Schering v. Amgen, 222 F.3d at 1352, 55 USPQ2d at 1653 ("The

fundamental inquiry is whether the material added by amendment was

inherently contained in the original application.").

 "Claims which are amended with limitations unsupported by the

original disclosure are rejected under 35 U.S.C. § 112 (first paragraph) as

lacking support in the specification, while such amendments to the abstract,

specification, and drawings are objected to as being drawn to new matter

Appeal 2007-2127
Reexamination Control No. 90/006,621

124

[under § 132]." Pennwalt Corp. v. Akzona Inc., 740 F.2d 1573, 1578 n.11,

222 USPQ 833, 836 n.11 (Fed. Cir. 1984) (citing In re Rasmussen,

650 F.2d 1212, 211 USPQ 323 (CCPA 1981)).

 To satisfy the written description requirement, "the applicant must . . .

convey with reasonable clarity to those skilled in the art that, as of the filing

date sought, he or she was in possession of the invention." Vas-Cath Inc. v.

Mahurkar, 935 F.2d 1555, 1563-64, 19 USPQ2d 1111, 1117 (Fed. Cir.

1991). Thus, "[t]he possession test requires assessment from the viewpoint

of one of skill in the art." Moba, B.V. v. Diamond Automation, Inc.,

325 F.3d 1306, 1320, 66 USPQ2d 1429, 1439 (Fed. Cir. 2003). "One shows

that one is 'in possession' of the invention by describing the invention, with

all its claimed limitations, not that which makes it obvious." Lockwood v.

American Airlines, 107 F.3d at 1572, 41 USPQ2d at 1966. "Although the

exact terms need not be used in haec verba, . . . the specification must

contain an equivalent description of the claimed subject matter." Id.

 Facts

 The facts are discussed in connection with each limitation.

 Analysis

 The Examiner's rejection identifies 37 groups of claims.

 1. Group 1

 The Examiner finds that there is no written description support for the

new limitation of an "input device with controlling software to input data

into the system" in claim 14 (Final Rejection 24 ¶ II.3(A)). The Examiner

finds that the '604 patent discloses editor and compiler software, but not a

Appeal 2007-2127
Reexamination Control No. 90/006,621

125

third piece of "controlling software" to control the input data (id.). It is

stated that "[e]ven though it is well known in the art that an input device

(keyboard) has software to input data, . . . in the disclosure of '604' patent,

there is no controlling software to . . . 'process previously input data' (like a

word processor . . .)" (id.). The Examiner apparently reasons that the later

added limitation of a first thread "to process previously input data"

"is implying that the previously input data is being manipulated by a

'controlling software' which did not exist before" (emphasis omitted) (id.).

 Patent Owner argues that the Examiner apparently confuses the

"controlling software to input data," which enters data into the system, with

the "first thread to process previously input data," which is the compiler in

the illustrative embodiment (Br. 82). It is argued that "the 'controlling

software' to which the amended claim 14 refers is the keyboard input routine

of the computer" (Br. 82). It is argued that the 1994 application discloses a

keyboard for inputting data, and, by the Examiner's admission that it was

known that a keyboard has software to input data, the limitation is inherently

disclosed (Br. 82-83).

 The claim language does not recite that the controlling software is

manipulating "previously input data," as interpreted by the Examiner.

Claim 14 recites that the "first thread" and "another thread" "process

previously input data," which is input by the controlling software. Although

the Examiner states that "it is well known in the art that an input device

(keyboard) has software to input data," we find no software disclosed as part

of the keyboard itself in the '604 patent. The '604 patent describes

transferring data from the keyboard using a UART (universal asynchronous

receiver-transmitter). Nevertheless, Figure 5 shows an "input character"

Appeal 2007-2127
Reexamination Control No. 90/006,621

126

function to retrieve characters from the keyboard as part of the editor

program, which is considered to be "controlling software to input data into

the system." Thus, this reason for the rejection of claim 14 is reversed.

 2. Groups 2, 12, 30, 36, and 37

 As to group 2 (claims 37, 44, 45, 57, and 58), the Examiner finds that

the limitations of "inserting each datum of said data in a different respective

location of the memory" (claim 37), "instructions executable to insert each

datum of said data in a different respective location of the memory"

(claim 44; claim 57 is similar), and "said respective location for the insertion

of each datum within the memory is selected by the operator with the

manually-operable input device" (claims 45 and 58) are without written

description support because "no selectivity of the location of memory by the

operator is disclosed (see col. 5, lines 17-18, character deletion or line

deletion is performed)" (Final Rejection 25 ¶ II.3(B)) and "any limitation

beyond character deletion is considered new matter" (id.). Basically, the

Examiner finds that the '604 patent does not support a general purpose editor

that is capable of inserting between characters.

 As to group 12 (claims 44, 45, and 58), the Examiner finds that there

is no written description for the limitation that the "location for the insertion

of each datum within the memory is selected by the operator" (claims 45 and

58) (Final Rejection 33 ¶ II.3(H)). We note that claim 44 does not recite that

the location is selected by the operator.

 As to group 30 (claim 71), the Examiner finds that the limitation of "a

cursor indicative of the buffer location to receive the next insertion of an

input datum" lacks written description support because the '604 patent only

Appeal 2007-2127
Reexamination Control No. 90/006,621

127

discloses inserting a pause mark at the end of a source code buffer line or

removing an old pause mark by substituting a blank for the pause mark, and

not inserting between characters (Final Rejection 45 ¶ II.3(S)).

 As to group 36 (claim 81) and group 37 (claim 83), the Examiner

finds that the limitations of an "editor comprising a character insertion

routine and also a control code editing routine, said character insertion

routine including instructions executable before the next interrupt operation

to enable the routine to relinquish control of the central processor upon

completion of its task of inserting a character" (claim 81) and an "editing

routine for performing conventional editing operations, said conventional

editing operations including conventional operations for moving the cursor

so as to enable the operator to select any location in the buffer where the

next character will be inserted by the character insertion routine" (claim 83)

lack written description support because the '604 patent does not disclose a

full screen editor which allows insertion of characters (Final Rejection 47-48

¶ II.3(Y)). The Examiner also finds that "there is no teaching as to

relinquishing control of the central processor upon completion of its task of

inserting a character" (Final Rejection 48).

 Patent Owner argues that the original 1994 application discloses that

the editor of the illustrative embodiment is a "screen editor." It is argued

that it would be apparent to one of ordinary skill in the art that each

alphanumeric character entered at the keyboard is entered into a different

location in a source code buffer (unless one intentionally overwrites a

character), which corresponds to a location on the screen, and that the user

can select at which memory location to insert or delete a character (Br. 85).

Appeal 2007-2127
Reexamination Control No. 90/006,621

128

 We agree with Patent Owner. Although the '604 patent does not

describe, in haec verba, an editor which allows insertion of characters at

operator-selected locations, one of ordinary skill in the art would find that

the '604 patent discloses an editor for performing conventional editing

operations, including insertion of characters. The '604 patent discloses "a

keyboard for entry of the source code to be compiled and also for entry of

editing commands to change the code" (col. 2, lines 64-66) and refers to

"implementation of a screen editor" (col. 2, line 67), which reasonably

teaches a screen editor for performing conventional editing functions. The

'604 patent describes that "an editing procedure, such as cursor movement,

screen scroll, character deletion, or line deletion is performed" (col. 5,

lines 16-18). These operations are only exemplary, as indicated by the

phrase "such as." It is indicated at column 8, lines 20-23, that the user can

select the location of the code to be edited using the keyboard (manually-

operable input device) to point to a location on the display, where this

location corresponds to a location in the source buffer. It is clear that the

editor is not the invention. The '604 patent describes additional functions of

the editor necessary to implement the incremental compiler function, such as

inserting a pause mark to indicate the progress of the compiler. Thus, we

find written description for the limitations in groups 2, 12, 30, 36, and 37.

 It is also noted that the input characters have to be inserted "in

different respective locations in memory" or they will be lost, unless it is

desired to overwrite a character, and different locations in memory

correspond to different locations on the screen. Thus, for this additional

reason, there is support for claims 37, 44, and 57, which do not require

inserting characters into an operator selected location.

Appeal 2007-2127
Reexamination Control No. 90/006,621

129

 This reason for the rejections of claims 37, 44, 45, 57, 58, 71, 81,

and 83, is reversed.3

 3. Groups 3, 5, 20, and 29

 As to group 3 (claims 38, 46, 50, and 59), the Examiner finds that the

limitations of "instructions executable to enter a body of initial data into the

system for storage in said memory" and "instructions executable after input

of said additional data into the system to modify the initial stored data in

accordance with the additional data" are without written description support

(Final Rejection 25-6 ¶ II.3(C)). The Examiner finds that the only disclosed

"modification" of data is when the editor replaces a "pause mark" with a

"blank," '604 patent, col. 5, lines 37-45, i.e., the editor is limited to entering

characters. Thus, the Examiner finds that "there is no modification of the

initial stored data in accordance with the additional data being performed in

the disclosure of the '604' patent" (emphasis omitted) (Final Rejection 26).

The Examiner feels that Patent Owner is attempting to "morph" a "compiler

line editor" into a general "word processor" (Final Rejection 26).

 As to group 5 (claims 38, 46, 50, and 59), the Examiner essentially

relies on the same reasoning as for group 3 (Final Rejection 27 ¶ II.3(E)).

 As to group 20 (claim 60), the Examiner finds that the limitation of

"an input routine to enter data into said buffer" and "instructions executable

to process said data after the data has been entered into the buffer by said

input routine and while the data remains stored in the buffer" are without

written description support because "there is no input routine in the '604'

 3 Because many claims are rejected for two or more reasons, we wait
until the end to summarize which claims are rejected.

Appeal 2007-2127
Reexamination Control No. 90/006,621

130

patent to do what is been claimed in claim 60" (Final Rejection 35-36

¶ II.3(J)). The Examiner finds that the '604 patent discloses (at col. 10,

lines 20-42) that when there is an error, the temporary entries are discarded

and the compiler pointer is moved back to the end of the previous line and

data is not processed "while said data remains stored in the buffer" (id.).

Again, the Examiner feels that Patent Owner is attempting to "morph" a

"compiler line editor" into a general "word processor" (Final Rejection 36).

 As to group 29 (claims 70 and 72), the Examiner finds that the

limitation "instructions executable to modify said data while each modified

datum remains stored within said buffer" (claim 70) lacks written description

support because the '604 patent discloses that if a line contains an error, the

temporary entries are discarded, rather than remaining stored

(Final Rejection 44-45 ¶ II.3(R)). Since claim 72 does not have this

limitation, it is improperly included in the rejection.

 Patent Owner argues that the editor is a full screen editor which is

capable of modifying the source code after it is entered (Br. 86). It is argued

that the descriptions of the editor changing an old pause mark to a blank

when it inserts a new pause mark, or returning the compiler pointer to the

end of the previous line if an error is found in the last line of code currently

being entered, are merely suggested methods for delimiting the portion of

the source code that the compiler is to process, and has nothing to do with

the editor or the contents of the source code buffer (Br. 87-89; Br. 91).

 We agree with Patent Owner that the '604 patent discloses an editor

that can modify stored data for the reasons stated with respect to Group 2.

We agree that changing the pause mark to a blank or returning the compiler

pointer to the end of the previous line relate to the method of delimiting the

Appeal 2007-2127
Reexamination Control No. 90/006,621

131

portion of the source code that the compiler is to process, i.e., everything up

to the pause mark, and is not relevant to the editor. These reasons for the

rejections of claims 38, 46, 50, 59, 60, 70, and 72 are reversed.

 4. Group 4

 As to group 4 (claim 39), the Examiner finds that the limitations of "a

keyboard for entering into the system data code in the form of words of a

language" and "another of said threads comprising instructions executable to

edit said words and sentences in response to keystrokes" are without written

description support because "[t]here is no disclosure directed to editing

'words of a language' or 'words and sentences'" (Final Rejection 26-27

¶ II.3(D)). The Examiner finds that the disclosed editor of the '604 patent is

a "compiler line editor" for entering a program language and not a "word

processor" that can act on any language, such as English, and the claims go

beyond the scope of the disclosure (Final Rejection 27).

 Patent Owner argues that the particular phrase, "entering into the

system data code in the form of words of a language," only refers to the

capability of keyboard entry (Br. 89). Patent Owner argues that the editor is

a full screen editor and the Examiner is confusing the operation of the

compiler with the editor (Br. 90-91).

 The question of support for the limitations "words" and "sentences" is

discussed in the next section.

 We agree with Patent Owner. The limitations at issue are keyboard

entry of data and the ability to edit such data. The keyboard in the '604

patent can enter alphanumeric and control data in any "form," i.e., whatever

meaning is attached to the characters, including in the form of words and

Appeal 2007-2127
Reexamination Control No. 90/006,621

132

sentences, although it disclosed as being intended for entering data in the

form of formal programming language. The editor can edit the entered data.

Thus, this reason for the rejection of claim 39 is reversed.

 5. Groups 6-11, 13-18, 26, and 31

 As to group 6 (claims 39, 41-43, 47, 48, and 51-53), group 7 (claims

39, 40-42, 48, 49, 52, and 53), group 8 (claims 40, 49, 54, 55, and 61),

group 10 (claims 42, 48, 53, and 61), group 11 (claims 42, 48, 53, and 61),

group 13 (claim 51), group 14 (claims 43, 54, and 62), group 15 (claim 51),

group 16 (claims 39, 40, 43, 49, 54, and 56), group 17 (claim 61), and

group 18 (claims 39, 40-43, and 47-49), the Examiner finds no written

description support for limitations relating to "language code," "natural

language," "English words," "words," "sentences," "lexical analyzer for

checking the spelling of words," "syntactic analyzer for checking the

grammar of words and sentence," and "syntactic analyses for parsing said

sentences" (Final Rejection 28-32 ¶ II.3(F)).

 As to group 9 (claims 40, 42, 43, 48, 49, 51, 53, 55, and 56), the

Examiner finds that the limitations "instructions executable to edit said

words and sentences concurrently as they are being parsed" (claim 40, 49,

and 55), "instructions executable to edit said words concurrently as they are

being parsed" (claim 43), "editing the entered words" (claim 51), and

"instructions executable . . . to edit said words concurrently as they are being

parsed" (claim 56) are without written description support because there is

no description of editing of words and sentences of a natural language (Final

Rejection 33 ¶ II.3(G). Although the rejection includes claims 42, 48, and

49, we do not find the editing limitations in those claims.

Appeal 2007-2127
Reexamination Control No. 90/006,621

133

 As to group 26 (claim 67), the Examiner finds that the limitation

"syntactic analysis instructions to determine whether the correctly spelled

words form grammatically correct sentences" is without written description

support because the '604 patent is directed only to syntactic analysis of

program source code (Final Rejection 41 ¶ II.3(O)).

 As to group 31 (claim 73), the Examiner finds that the limitation of a

"lexical analyzer to form said data into sequences each constituting a word"

lack written description support because the '604 patent does not disclose the

lexical analyzer analyzing "words" (Final Rejection 45-6 ¶ II.3(T)).

 a. Overlooked claims

 Claims 63-66, 73, 74, 76, 77, and 79 contain similar limitations to

checking spelling and/or grammar and, therefore, were apparently

inadvertently overlooked in making the rejections. Inclusion of these claims

does not raise a new ground of rejection because Patent Owner was

informed of the problem with respect to other claims (nor do we think that

Patent Owner wants this decision to be labeled as containing a new ground

of rejection because that would only further delay judicial review).

 b. Analysis

 These rejections relate to the subject matter that Patent Owner tried to

incorporate from the parent 1990 application by amendment, as discussed in

the Preliminary Issue, supra. These rejections involve claims reciting that

the code processed by the program may be words and sentences of a natural

language such as English, and that lexical analysis may be used to determine

correct spelling and syntactic analysis may be used to determine correct

Appeal 2007-2127
Reexamination Control No. 90/006,621

134

grammar of a natural language code. The Examiner finds that the '604

patent only describes lexical and syntactic analyses of formal programming

languages. The rejections involve the following limitations (claims in bold

indicate claims that were "overlooked"):

 "words of a language" (claims 39, 41, 42, 47, 48, 53);
 "words of a natural language" (claim 51);
 "words of English sentences" (claim 40, claims 43 and 49 are similar);
 "words forming English sentences (claims 40, 54, and 55);
 "words and sentences" (claim 39);
 "sentences of a language" (claim 56);
 "syntactic analyses for parsing said sentences" (claim 56);
 "syntactic analyses for parsing said words [of the English language]"

(claim 43);
 "lexical analysis for checking the spelling of said words" (claim 39,

claims 48 and 52 are similar);
 "syntactic analyzer for checking the grammar of said sentences"

(claim 74);
 "lexical and syntactic analyses for parsing said [English] sentences by

checking the spelling and grammar of said words and said
sentences" (claims 40, 54, and 55, claims 49 and 62 are
similar);

 " instructions executable to analyze the words [of a natural language]
for conformity with said rules" (claim 51);

 "lexically analyzing each identifier to check the identifier for correct
spelling upon its formation" (claim 63; claim 64 because it
depends on claim 63);

 "lexical analyzer to form the characters into sequences constituting a
word and thereupon to check the spelling of each of said words
upon its formation" (claim 65);

 "checking the spelling of said word upon a determination that the last
character of the word has been input" (claim 66);

Appeal 2007-2127
Reexamination Control No. 90/006,621

135

 " instructions executable to . . . check the spelling of said word upon a
determination that the last character of the word has been
inserted" (claim 73);

 " syntactic analyzer for checking the grammar of said sentences"
(claim 74);

 "instructions to check the spelling of said word upon a determination
that the last character of the word has been inserted" (claim 76);

 " data comprises sentences of a language, and one of said threads
comprises a syntactic analyzer for checking the grammar of
said sentences" (claim 77);

 "instructions executable . . . to analyze said words for correctness in
accordance with predetermined rules" (claim 79) (which we
interpret to include spelling checking).

 The '604 patent only discloses a compiler/editor for entering and

performing lexical and syntactic analyses on a programming language.

Although the '604 patent states that this illustrates "one of the many uses of

the novel multithreading mode of operation" (col. 1, lines 54-55), no other

examples are given. Now Patent Owner seeks to change a compiler/editor

into a word processor with spelling and grammar checking "as you type."

No one reading the '604 patent would find this to be the disclosed invention.

 The '604 patent omits the statements in the 1982 and 1985

applications, and '603 patent that "[l]exical analysis is performed by a

'scanner' and is the process of forming a sequence of source code bytes into

meaningful symbols or tokens, somewhat like forming a sequence of

characters into English words" ('603 patent, col. 3, lines 1-5) and that

"[t]hese [lexical and syntactic] analyses are very much like parsing the

words of an English sentence" ('603 patent, col. 3, lines 13-14). The '604

patent also omits the disclosure added to the 1990 application that the code

Appeal 2007-2127
Reexamination Control No. 90/006,621

136

processed by the program may be a natural language such as English, or the

numbers and strings of a spreadsheet or database, and that lexical analysis

may be used to determine correct spelling and syntactic analysis may be

used to determine correct grammar of a natural language code. This omitted

subject matter cannot be added back into the '604 patent to provide written

description support without showing that it is inherently present in the 1994

application, as filed. By omitting this subject matter in the '604 patent,

Patent Owner clearly indicated his intention that it was not his invention.

 Nevertheless, Patent Owner relies on the omitted subject matter. For

example, Patent Owner argues that "[i]t was inherent to one of ordinary skill,

as of 1994, reading the original 1994 application (or as of 1982, reading the

original Detailed Description of the 1982 application): that the disclosed

conventional lexical and syntactic analyses were analogous to those used in

efforts to analyze or describe natural languages (e.g., English)" (Br. 91).

However, the 1982 disclosure comparing the analyses to forming English

words and parsing English sentences is not in the original 1994 application

or the issued '604 patent. As another example, Patent Owner argues that

"[a]s also added by amendment to the '604 specification, and as disclosed in

Patent Owner's 1982 application, 1985 application, 1990 application and

issued '603 patent: 'These [lexical and syntactic] analyses are very much like

parsing the words of an English sentence'" (emphasis omitted) (Br. 92).

Again, this quoted statement was omitted from the original 1994 application

and '604 patent and cannot be reintroduced without adding new matter.

 Patent Owner argues that the techniques for analyzing formal

computer programming languages are related to those for analyzing natural

languages. It is argued that techniques originally created by linguists such as

Appeal 2007-2127
Reexamination Control No. 90/006,621

137

Prof. Noam Chomsky for analyzing natural language were later used by

compiler designers for analyzing the lexical and syntactic elements of

computer programming languages, which language contained ordinary

English language words (Br. 91; Br. 93), that the operation of the disclosed

program compiler is "analogous . . . to the earlier studies of lexical and

syntactic analysis of natural languages" (Br. 93), and that origin and history

of lexical and syntactic analysis of computer programs were intertwined

with that of natural languages (Br. 94). It is argued that "[b]y 1982, persons

skilled in the art would have known that the lexical and syntactic analyzers

of the illustrative embodiment would be applicable to both natural and

computer programming languages" (Br. 100). Patent Owner refers to

Dr. Ligler's declaration dated April 12, 2004, at ¶¶ 29-32 for his opinion that

"[t]he teachings of the Detailed Description section of the specification of

the '604 patent would inherently be seen as applicable, to a person of

ordinary skill in the art of the Reiffin '603 and '604 patents in 1982, to the

computer-assisted spelling and grammar checking of a document written in

the English language" (Opinion G, April 2004, declaration, page 14).

 The '604 patent does not disclose or reasonably suggest that Patent

Owner possessed the invention of lexical and syntactic analysis of natural

languages. "One shows that one is 'in possession' of the invention by

describing the invention, with all its claimed limitations, not that which

makes it obvious." Lockwood v. American Airlines Inc., 107 F.3d at 1572,

41 USPQ2d at 1966. Patent Owner's and Dr. Ligler's description of the

relationship between analyses of computer programming languages and

natural languages is no substitute for an express description in the '604

patent. If extrinsic evidence of what was known to those skilled in the art

Appeal 2007-2127
Reexamination Control No. 90/006,621

138

could be used to supplement and expand the record, there never would be

any certainty about what a patent discloses.

 Patent Owner cites (Br. 93) the following description from Aho &

Ullman, Principles of Compiler Design (1977), p. 6:

 The first phase, called the lexical analyzer, or scanner,

separates characters of the source language into groups that logically
belong together; these groups are called tokens. The usual tokens are
keywords, such as DO or IF, identifiers, such as X or NUM, operator
symbols such as = or +, and punctuation symbols such as parentheses
or commas, the output of the lexical analyzer is a stream of tokens,
which is passed to the next phase, the syntax analyzer, or parser.

It is argued that "[t]he lexical analyzer of a compiler checks against its

dictionary the spelling of the English words within a source code program in

the same manner that the spelling of English words in a document (for

example) can be checked" (Br. 93). It is also argued that a computer

program compiler performs spelling checking and grammar checking in the

same manner as for English words in a document and, therefore, "one of

ordinary skill in the art would understand . . . that the lexical and syntactic

analyzers could be adapted to check the entered words in accord with the

spelling and basic grammatical rules of any natural language" (Br. 95).

 Again, the test for possession of the claimed invention is not what

would have been obvious to one skilled in the art or whether one skilled in

the art would understand that the system could be "adapted" to perform

some other undisclosed function, but what is actually disclosed. The '604

patent does not describe or suggest lexical and syntactic analyzers for

checking words and sentences of a natural language. The description of

compilers in Aho & Ullman does not hint that a compiler is equivalent to a

Appeal 2007-2127
Reexamination Control No. 90/006,621

139

word processor with spelling and grammar checking. Also, Patent Owner

appears to be mistaken in stating that a compiler performs spelling checking.

Nothing in the description of the lexical analyzer in Aho & Ullman mentions

spelling checking. The analyzer merely breaks a string of characters into

groups, called tokens, which may be keywords, identifiers (variable names),

symbols, and punctuation marks, and passes the string of tokens to the

syntax analyzer—it does not check to see whether the keywords, for

example, are spelled correctly. While, perhaps, the compiler might generate

an error if a token is misspelled, it would be because the token is not

recognized, not because its spelling has been looked up in a dictionary. One

of the references cited in Mr. Reiffin's declaration states that collecting

sequences of characters into meaningful units "can be thought to perform a

function similar to spelling" (¶ 9) but this is not the same as spelling.

 Patent Owner argues that limitations to "words" and "sentences" are

not new matter because "[h]high-level program source code comprises many

ordinary English (or other natural language) words, using the same ASCII

code used to represent natural language text in a computer" (Br. 95-96), such

as "BEGIN," "END," "THEN," "WHILE," "DO," etc. (Br. 96; Br. 97)).

Patent Owner argues that the Examiner erred in rejecting claims that contain

limitations to "language code" and "natural language" because "the language

used in source code of the illustrative embodiment is made up of 'words' —

indeed, English language words — and so the phrase 'words of a language' is

fully supported by the specification even under the Examiner's crabbed

interpretation" (Br. 98) and "persons of ordinary skill would have

understood that the disclosed invention was applicable to both natural and

computer programming languages" (Br. 98).

Appeal 2007-2127
Reexamination Control No. 90/006,621

140

 The problem is that Patent Owner is trying to shift from a formal

programming language, consisting of mix of keywords, identifiers, symbols,

and punctuation marks, to a natural language consisting only of words and

punctuation marks. This is not described. Keywords are special symbols

and are not words used to form sentences. The lines of a program are not

sentences composed only of words. The '604 patent does not describe

operating on words and sentences.

 Patent Owner states that the book by Prof. N. Wirth, Algorithms +

Data Structures = Programs (Prentice-Hall, Inc. 1976), Ch. 5,

pages 280-347, mentioned in the '604 patent for its description of a compiler

(col. 5, line 66 to col. 6, line 2), should be treated as incorporated by

reference (Br. 96 n.25). Patent Owner refers to the following statement in

Wirth as support for claiming "words" and "sentences":

 Every language is based on a vocabulary. Its elements are
ordinarily called words; in the realm of formal languages, however,
they are called (basic) symbols. It is characteristic of languages that
some sequences of words are recognized as correct, well-formed
sentences of the language and that others are said to be incorrect or ill-
formed. What is it that determines whether a sequence of words is a
correct sentence or not? It is the grammar, syntax, or structure of the
language. In fact, we define the syntax as the set of rules or formulas
which defines the set of (formally correct) sentences. [Emphasis in
original.]

It is argued that "[d]uring the lexical analysis of the symbols making up the

source code, the spelling of those symbols that are words is checked, and

during syntactic analysis, the grammar of the programming language

statements is checked" (Br. 99), and the "Wirth text that describes the

compiler used in the illustrative embodiment specifically analogizes

Appeal 2007-2127
Reexamination Control No. 90/006,621

141

computer program statements to 'sentences,' and this is in accord with the

common understanding of persons skilled in the art as of 1982" (Br. 99-100).

 "Incorporation by reference provides a method for integrating material

from various documents into a host document . . . by citing such material in

a manner that makes clear that the material is effectively part of the host

document as if it were explicitly contained therein." Advanced Display Sys.,

Inc. v. Kent State Univ., 212 F.3d 1272, 1282, 54 USPQ2d 1673, 1679 (Fed.

Cir. 2000) (citations omitted). "To incorporate material by reference, the

host document must identify with detailed particularity what specific

material it incorporates and clearly indicate where that material is found in

the various documents." Id. (citations omitted). The '604 patent does not

state that the Wirth book is incorporated by reference, so it is not. Nor does

the '604 patent indicate that the Wirth book is relevant for anything other

than the PL/O compiler, which Patent Owner modified (col. 5, line 67 to

col. 6, line 3), so other descriptions in Wirth simply do not provide any

support for the subject matter Patent Owner is now claiming. Also, Patent

Owner again errs in stating that the compiler checks the spelling of the

symbols during the lexical analysis; lexical analysis merely splits a string of

characters into tokens for analysis by the compiler.

 Patent Owner argues that the USPTO allowed amendments during the

prosecution of the '603 patent to recite "text processor" instead of "compiler"

and "text" code instead of "source" code, and that issued '603 patent

claim 32 is directed to a "word processing program" with a thread to "check

the spelling of . . . stored words" and a thread "responsive to [the] keyboard

to enter words into said memory" (Br. 98). It is argued that the Examiner

erred in rejection claims directed to spelling or grammar checking because

Appeal 2007-2127
Reexamination Control No. 90/006,621

142

"the 1990 Application for the '603 patent as originally filed makes explicit

what was inherent to one of ordinary skill: that the disclosed conventional

lexical and syntactic analysis techniques were earlier used for analyzing

natural language (e.g., English)" (Br. 99).

 The issue is whether there is written description support in the '604

patent, not in the '603 patent. Whether the amendments to the '603 patent

were properly entered is not before us. Moreover, the '603 patent mentioned

natural languages, which disclosure is omitted in the '604 patent.

 Patent Owner's arguments do not persuade us that there is written

description support for claims directed to words and sentences and spelling

and grammar checking of a natural language. This reason for the rejections

of claims 39-43, 47-49, 51-56, 61-67, 73. 74, 76, 77, and 79 is affirmed.

 6. Group 19

 As to group 19 (claims 1, 4, 6, 7, 14, 18, 24, 26, 27, 31, 33, and 824),

the Examiner finds that adding the limitation "processing" before the words

"thread" or "task" lacks written description (Final Rejection 33-35 ¶ II.3(I)).

The Examiner interprets "processing thread" to be the thread that is currently

executing on the CPU and changing "thread" to "processing thread" changes

the state of the thread from a waiting (suspended) thread to a running thread,

which is inconsistent with the '604 patent disclosure (Final Rejection 34).

 Patent Owner argues that "processing" is an adjective describing the

type of thread, not a present participle meaning that the thread is "running,"

as interpreted by the Examiner (Br. 103). It is argued that a "processing

 4 Claim 82 is not mentioned in the rejection, but is apparently rejected
only because it depends on rejected claim 26.

Appeal 2007-2127
Reexamination Control No. 90/006,621

143

thread" is distinct from "input threads" or "output threads" (Br. 103,

referring to Br. 45-49). Patent Owner also notes that unamended issued

patent claims 10, 17, and 22 recite in effect that both threads are "processing

threads," by characterizing them as "threads for processing," so the

amendatory matter is not "new" under MPEP § 2258 (Br. 103).

 We agree with Patent Owner that the Examiner misinterprets

"processing thread" to be a "running" or "executing" thread, so the rejection

is based on an erroneous claim interpretation. Nevertheless, this is a close

case. Unamended issued patent claims 10, 17, and 22 refer to means for

entering into memory "a body of data code to be processed" and "threads for

processing said body of [previously entered] data code." The limitation

"processing thread," by itself, does not necessarily imply that it operates

only on data previously entered into memory. "Processing" can refer to any

operation performed by the processor, including taking data from an input

and putting it into memory. Thus, claims 10, 17, and 22 do not prove that

adding "processing" to other claims is not new. Patent Owner defined

"processing" during the prosecution to be limited to operations performed on

data after it is stored in the memory and before it is output (see discussion in

anticipation rejection over De Jong). Since the descriptions of the editor and

compiler in the '604 patent disclose operations performed on data after it is

in the buffer, there appears to be sufficient support for the amendment based

on Patent Owner's statements during prosecution. This reason for the

rejection of claims 1, 4, 6, 7, 14, 18, 24, 26, 27, 31, 33, and 82 is reversed.

Appeal 2007-2127
Reexamination Control No. 90/006,621

144

 7. Group 21

 As to group 21 (claim 56), the Examiner finds that the limitations of

"a keyboard for entering code in the form of sentences of a language in

response to keystrokes" and "parsing said words during time intervals

between the keystrokes" lack written description support because the editor

is not interruptible and the compiler does not execute when the editor is

running, so the compiler cannot parse words during the time intervals

between the keystrokes (Final Rejection 36-37 ¶ II.3(K)).

 Patent Owner argues that the question of whether or not the editor is

interruptible is irrelevant to whether the compiler can parse words during the

time interval between keystrokes (Br. 104). It is noted that in the

clock-activated embodiment, a clock generates an interrupt, invoking the

interrupt service routine, the input port is polled to test if a key has been

struck, and if so the editor is invoked (Br. 105). It is argued that if the

keystroke is an ordinary alphanumeric character, it is "entered into the

source code buffer and displayed on the video screen, and the screen cursor

is advanced to the next character position" ('604 patent, col. 5, lines 20-22)

and the editor terminates and returns control to the interrupted compiler

operation (Br. 105-06).

 The limitations about "sentences of a language" and "words" were

addressed supra. As noted in the discussion of group 4, the keyboard in the

'604 patent can enter alphanumeric and control data in any "form," including

in the form of words and sentences.

 We agree with Patent Owner that "parsing said words during time

intervals between the keystrokes" is supported by the '604 patent (with the

exception of the term "words"). The '604 patent discloses that control is

Appeal 2007-2127
Reexamination Control No. 90/006,621

145

passed to the compiler "after the editor has completed the character entry or

editing function corresponding to the key struck at the terminal" (col. 9,

lines 9-11). That is, the editor works on a keystroke-by-keystroke basis and

control returns to the compiler between keystrokes, so the compiler works in

the time intervals between keystrokes. Whether the editor is interruptible or

not does not make any difference. It appears that the Examiner believes that

the editor will never give up control, but this is incorrect. This reason for the

rejection of claim 56 is reversed.

 8. Group 22

 As to group 22 (claims 1, 4, 6, 18, 24, 26, 41, and 825), the Examiner

finds that the limitations "subtasks each performed concurrently on

alphanumeric data" (underlining omitted) (claim 1), two threads "for

processing said alphanumeric data" (underlining omitted) (claims 4 and 6),

two threads "processing alphanumeric data" (underlining omitted)

(claims 18, 24, and 26), and (apparently) "entering and editing data code

comprising alphanumeric characters" (underlining omitted) (claim 41) lack

written description (Final Rejection 38-40 ¶ II.3(L)). The Examiner finds

that the '604 patent discloses that editor checks to see if the keystroke is a

"control character" or an "alphanumeric character" and there is no support

for amending the claims to recite that the subtasks are performed only on

"alphanumeric data" (Final Rejection 38-40).

 The Examiner's position is that the claims are attempting to read out

the operations using "control characters." However, the fact that the claims

 5 Claim 82 is not mentioned in the rejection, but is apparently rejected
only because it depends on rejected claim 26.

Appeal 2007-2127
Reexamination Control No. 90/006,621

146

have been amended to recite operating on alphanumeric data does not

preclude a subtask from also operating on control characters. Since the

editor and compiler work on alphanumeric data, there is written description

support for the added alphanumeric limitations. This reason for the rejection

of claims 1, 4, 6, 18, 24, 26, 41, and 82 is reversed.

 9. Groups 23-25, 33, and 34

 As to group 23 (claims 63 and 65), the Examiner finds that the

limitations of "grouping the characters into sequences each constituting an

identifier" (claim 63) and a "lexical analyzer to form the characters into

sequences each constituting a word" (claim 65) lack written description

because the '604 patent does not teach grouping of characters into identifiers

or words (Final Rejection 40 ¶ II.3(M)).

 As to group 24 (claim 64), the Examiner finds that the limitation of a

"syntactic analyzer thread to determine whether said identifiers are

interrelated in accordance with predetermined rules of grammar" lacks

written description because the '604 patent does not teach determining

whether identifiers are interrelated (Final Rejection 40 ¶ II.3(M)).

 As to group 25 (claims 66 and 76), the Examiner finds that the

limitations of "determining whether the last character of a word has been

input" (claim 66) and "determine whether the last character of a word has

been inserted into the buffer" (claim 76) lack written description because the

'604 patent only discloses determining if the last character of a symbol has

been input, and a "word" is different from a "symbol." (Final Rejection 41

¶ II.3(N)).

Appeal 2007-2127
Reexamination Control No. 90/006,621

147

 As to group 33 (claim 78), the Examiner finds that the limitation "to

form input data code into groups" lacks written description because he finds

no teaching of this limitation (Final Rejection 46 ¶ II.3(V)).

 As to group 34 (claim 79), the Examiner finds that the limitation "to

form input data code into words" lacks written description because he finds

no description of forming code into "words" (Final Rejection 46-47

¶ II.3(W)). It is stated that computer programming variables and statements

are not words and sentences and operation on a natural language requires

different lexical and semantic analyses (Final Rejection 46-47).

 Patent Owner notes (Br. 109) that the '604 patent specification

explains that "the lexical analyzer of the compiler then determines if the

source character read in constitutes the last character of a symbol, such as an

identifier, operator or punctuation mark" (col. 5, lines 46-49). Patent Owner

argues that "symbols" and "identifiers" in the context of a source code

compiler include many normal English language words (Br. 109) and "[t]he

fact that some 'symbols' in the context of source code compilation are not

English language words does not negate that fact that many source code

'symbols' are in fact normal English language words" (Br. 110). Patent

Owner concludes that "claims directed to parsing English language words

are fully supported by the disclosure of the '604 patent" (Br. 110).

 Programming language symbols are known to consist of keywords

(words reserved for the language, such as "BEGIN," "END", "IF, "THEN,"

etc.), identifiers (variable names, such as "X" or "Y"), operator symbols (for

mathematical and logical operations, such as "+," "-," "=," ">," etc.), and

punctuation marks (for delimiting expressions and comment statements,

such as "(," ")," "{," "}, "//," etc.). See Aho & Ullman, Principles of

Appeal 2007-2127
Reexamination Control No. 90/006,621

148

Compiler Design (1977), page 6 (Br. 93). Lexical analyzers for compliers

necessarily determine when the last character of a keyword, identifier,

operator, or punctuation mark has been inputted as part of the process of

separating the symbols into "tokens." Id. The "tokens" can be considered to

be "groups," so there is inherent written description support for claim 78.

Since a computer program symbol can be a "word" (i.e., a "keyword"), there

is written description support for claims 66, 76, and 79 because these claims

do not require that the input code only consists of words. This reason for the

rejection of claims 66, 76, 78, and 79 is reversed.

 Although a computer program token can be a "word" or an

"identifier," not every token is "word" or an "identifier" because there must

be identifiers, operators, and punctuation marks. Therefore, we find no

written description support for the limitation of "grouping the characters into

sequences each constituting an identifier" (claim 63) and a "lexical analyzer

to form the characters into sequences each constituting a word" (claim 65).

Because Patent Owner does not define "identifier," he may be equating the

term with a "word," although in the computer art, it has a special meaning as

variable name. These claims are trying to indirectly claim that the data are

words of a language. The rejection of claims 63 and 65 is affirmed.

 We do not find where Patent Owner addresses the limitation of a

"syntactic analyzer thread to determine whether said identifiers are

interrelated in accordance with predetermined rules of grammar" (claim 64).

While programming language syntactic analyzers apply predetermined rules

of grammar, it is not known whether they determine whether the identifiers

are related or if Patent Owner is trying to indirectly claim syntactic analysis

Appeal 2007-2127
Reexamination Control No. 90/006,621

149

of a natural language by using fuzzy language. Nevertheless, since claim 64

depends on claim 63, the rejection of claim 64 is also affirmed.

 10. Group 27

 As to group 27 (claim 68), the Examiner finds that the limitation of

"repeatedly executing the editor to control the central processor to insert an

input character into a respective operator-selected location within said

buffer" lacks written description because the editor is executed once after

each compiler interruption and is not repeatedly executed, and the limitation

of "passing control of the central processing unit from the editor upon each

completion by the editor of an insertion of a character into said buffer" lacks

written description because the editor is not interrupted and one character or

a whole program could be entered (Final Rejection 42-43 ¶ II.3(P)).

 Patent Owner argues that since the compiler is repeatedly interrupted,

the editor is repeatedly executed (Br. 106-7). Patent Owner argues that in

the disclosed embodiment, when the compiler is interrupted by the clock, the

interrupt service routine checks to see if a key has been struck, and, if so, the

editor takes control and if the key is an alphanumeric key, it is inserted into

the source code buffer and the editor returns to the compiler using the

"TOPLO" procedure described at column 9, lines 8-20 (Br. 107).

 We agree with Patent Owner. The compiler is repeatedly interrupted

by the clock, the input port is polled, and the interrupt service routine editor

is executed if polling reveals that a key was struck ('604 patent, col. 10,

lines 6-11). The editor is repeatedly run even if it is not run every time the

compiler is interrupted. Control is passed to the compiler "after the editor

has completed the character entry or editing function corresponding to the

Appeal 2007-2127
Reexamination Control No. 90/006,621

150

key struck at the terminal" (col. 9, lines 9-11). That is, the editor works on a

keystroke-by-keystroke basis and control returns to the compiler between

keystrokes. It appears that the Examiner believes that the editor will never

give up control, but this is not true. Thus, there is written description for the

limitations of claim 68. This reason for the rejection of claim 68 is reversed.

 11. Groups 28, 32, and 35

 As to group 28 (claim 69), the Examiner finds that the limitation

"clock driven means for periodically activating said interrupt input at brief

predetermined time intervals so as to interrupt the execution of one of said

threads upon each activation of said interrupt input" lacks written description

because the interrupt input is always after the clock is interrupted and there

is no teaching of activating the clock after activation of the interrupt input

(Final Rejection 43-4 ¶ II.3(Q)). The Examiner agrees with the district court

in Reiffin v. Microsoft that the editor is not interruptible, and therefore finds

no support for the editor being interrupted (Final Rejection 43-44).

 As to group 32 (claim 75), the Examiner finds that the limitation "said

clock timer, interrupt operation and interrupt service routine coacting to

switch control of the central processor from one thread to another

repeatedly" lacks written description for the reasons stated with respect to

group 28 (Final Rejection 46 ¶ II.3(U)).

 As to group 35 (claim 80), the Examiner finds the limitation "at least

one of said threads is invoked by said periodic clock-activated interrupt

service routine in response to activation of said interrupt operation" lacks

written description for the reasons stated with respect to group 28 (Final

Rejection 47 ¶ II.3(X)).

Appeal 2007-2127
Reexamination Control No. 90/006,621

151

 Patent Owner argues that the rejections are groundless, given the fact

that issued, unamended claims have essentially the same limitation, e.g.,

claim 10 (Br. 107). Patent Owner argues that the Examiner misunderstands

the grammar of the claim element to require that the clock interrupt the

thread, when, as disclosed, the clock means activates the interrupt input, and

the interrupt input interrupts the thread (Br. 107-08). Patent Owner argues

that the claim language does not require the editor to be interrupted, and "an

operating mode in which the clock generated interrupt only interrupts the

compiler, thus invoking the interrupt service routine, which, if appropriate,

invokes the editor, which then returns to the compiler when it finishes its

task . . . is in accord with the requirement of this claim element" (Br. 108).

 We agree with Patent Owner that claims 69 and 80 do not require that

both the threads are interrupted and, thus, do not require that the editor is

interrupted (but do not preclude both threads from being interrupted). Claim

69 recites "interrupt the execution of one of said threads upon each

activation of said interrupt input," which could be the compiler. Claim 80

recites that "at least one of said threads" is interrupted, which could be just

the compiler, although this assumes that the other thread is never executing

at the interrupt. Whether interrupting only one thread can be considered

"multithreading" as defined in the art is another question. These reasons for

the rejections of claims 69 and 80 are reversed.

 However, claim 75 recites "said clock timer, interrupt operation and

interrupt service routine coacting to switch control of the central processor

from one thread to another repeatedly," which implies that at least two

threads are interrupted. The '604 patent does not disclose interrupting two

threads. Therefore, the rejection of claim 75 is affirmed.

Appeal 2007-2127
Reexamination Control No. 90/006,621

152

 Summary

 To summarize, one or more rejections of claims 39-43, 47-49, 51-56,

61-67, 73-77, and 79 are affirmed.

 The rejections of claims 1, 4, 6, 7, 14, 18, 24, 26, 27, 31, 33, 37, 38,

44-46, 50, 57-59, 68-72, 78, 80, 81, and 83 are reversed.

BROADENING

 Issue

 The Examiner rejected 16 groups of claims under 35 U.S.C. § 305 as

enlarging the scope of the claims being reexamined. Patent Owner argues

(Br. 110): "Each of the limitations that the Examiner refers to has been

added to the claims and does not replace any text previously in the claims.

As a matter of inexorable logic, none of the amendments broaden the claims,

they only narrow them."

 The issue is whether the new and amended claims impermissibly

broaden the reexamination claims contrary to 35 U.S.C. § 305.

 Principles of law

 "No proposed amended or new claim enlarging the scope of a claim of

the patent will be permitted in a reexamination proceeding under this

chapter." 35 U.S.C. § 305; see also 37 C.F.R. § 1.552(b) ("Claims in an

ex parte reexamination proceeding will not be permitted to enlarge the scope

of the claims of the patent."). A claim is broader in scope if it includes

within its scope any subject matter that would not have infringed the original

patent. See In re Freeman, 30 F.3d 1459, 1464, 31 USPQ2d 1444, 1447

(Fed. Cir. 1994).

Appeal 2007-2127
Reexamination Control No. 90/006,621

153

 Analysis

 The rejection does not analyze how the scope of the reexamination

claims includes subject matter that is not covered by the original patent

claims under the legal test for broadening. Nor does the rejection explain

how adding limitations can logically cause the claims to be broadened.

 It appears that the Examiner confuses broadening of the claim scope

with lack of written description.6 For example, the Examiner concludes the

claims in group 1 are broadened because they add the word "processing" in

front of the word "thread" or "task." Patent Owner argues that "processing"

is an operation performed on data after it is stored in memory and before it is

output. Although we do not agree that "processing" in a computer is this

limited, it is certainly not a broadening term. Thus, a "processing thread" is

narrower than a "thread." Accordingly, the rejection of claims 1, 4, 6, 7, 14,

18, 24, 26, 27, 31, and 33 in group 1 is reversed.

 Similarly, the Examiner concludes that the claims in groups 2-6,

which recite "words" and "sentences" of a "natural language," and recite

spelling checking and grammar checking of words and sentences of a natural

language, are broadened because the '604 patent only discloses checking

"variables and statements" of a "programming language" (Final

Rejection 57-58 ¶¶ II.6(B)-(D)). If the original patent claims (as opposed to

 6 The Examiner's reasoning generally parallels the written description
rejection: group 1 of the broadening rejection corresponds to group 14 of the
written description rejection; groups 2-5 correspond to and overlap
groups 6-11 and 13-18; groups 6-14 correspond to groups 26-34,
respectively; and groups 15 and 16 of the broadening rejection correspond to
groups 36 and 37, respectively, of the written description rejection.

Appeal 2007-2127
Reexamination Control No. 90/006,621

154

only the disclosure) were limited to formal programming languages, then

reciting natural languages would be a broadening of the scope. However,

none of the issued '604 patent claim recite the nature of the data, such as a

language, or the nature of the operations performed on the data, such as

lexical and syntactic analysis. Thus, limiting the type of data to "words" and

"sentences," and the type of operations to spelling checking and grammar

checking is a narrowing of the claim scope. Whether there is written

description support for such amendments is a separate issue. The rejections

of claims 39-43, 47-49, 51-56, 61, and 65-67 in groups 2-6 are reversed.

 We have likewise considered groups 7-16, but do not find any

broadening of the scope of the claims. Accordingly, the rejections of

claims 68-73, 75, 78, 79, 81, and 83 in groups 7-16 are reversed.

CONCLUSION

 The '604 patent is not entitled to the benefit of a priority date of the

1990 application or earlier under 35 U.S.C. § 120.

 The rejection of claims 1-38, 44-47, 50, 57-60, 68-72, 75, and 80-83

under 35 U.S.C. § 102(b) as being anticipated by Krantz is affirmed.

 The rejection of claims 41, 42, 51, 78, and 79 under § 103(a) as being

unpatentable over Krantz and Nitta is affirmed. The rejection of claims 39,

40, 43, 48, 49, 52-56, 61-67, 73, 74, 76, and 77 under § 103(a) over Krantz

and Nitta is reversed.

 The rejection of claims 1-38, 44-47, 50, 57-60, 68-72, 75, and 80-83

under § 102 as being anticipated by De Jong is reversed.

Appeal 2007-2127
Reexamination Control No. 90/006,621

155

 The rejections of claims 39-43, 48, 49, 51-56, 61-67, 73, 74, and

76-79 stand rejected under § 103(a) as being unpatentable over De Jong in

view of either Heard or Nitta are reversed.

 One or more of the rejections of claims 39-43, 47-49, 51-56, 61-67,

73-77, and 79 under § 112, first paragraph, based on lack of written

description are affirmed. The rejections of claims 1, 4, 6, 7, 14, 18, 24, 26,

27, 31, 33, 37, 38, 44-46, 50, 57-60, 68-72, 78, and 80-83 are reversed.

 The rejection of claims 1, 4, 6, 7, 14, 18, 24, 26, 27, 31, 33, 39-43,

47-49, 51-56, 61, 65-73, 75, 78, 79, 81, and 83 under § 305 as impermissibly

enlarging the scope of the claims of the '604 patent is reversed.

 In summary, one or more rejections of all claims 1-83 are affirmed.

 No time period for taking any subsequent action in connection with

this appeal may be extended under 37 C.F.R. § 1.136(a)(1)(iv) (2006).

AFFIRMED

VW

Appeal 2007-2127
Reexamination Control No. 90/006,621

156

Attachments:

 Copies of the following references mentioned in the opinion are
attached to put the references together in one place. Included is a copy of
Patent Owner's 1982 application involved in the priority determination.

Jean Bacon, Concurrent systems: an integrated approach to operating
systems (Addison-Wesley Publ. Co. 1993), pages 1 and 19.

Helen Custer, Inside Windows NT (Microsoft Press 1993), pages 83-100,
106, 337, 346, 347, 352, 357.

Harvey M. Deitel, An Introduction to Operating Systems (2d ed. Addison-
Wesley Publ. Co., Feb. 1990), pages 781-793.

Marvin L. De Jong, Apple II® Assembly Language (Howard W. Sams &
Co., Inc. June 2, 1982), pages 181, 235-44, and 265-82.

Ray Duncan, Advanced OS/2 Programming (Microsoft Press 1989), pages 7,
8, 143, 144, 227-39, 296, 499, 756, 758, and 760.

Ed Iacobucci, OS/2 Programmer's Guide (McGraw-Hill 1988), pages 106,
107, 188, 189, 602-606.

Jeffrey I. Krantz et al., OS/2™: Features, Functions and Applications (John
Wiley & Sons, Inc. 1988), page 5-21, 39, 57-68, 93-100, 112, 167-69, and
188-90.

Robert Lafore and Peter Norton, Peter Norton's Inside OS/2 (Brady Books
1988), pages 4-24, 102-106, 134-140.

Gordon Letwin, Inside OS/2 (Microsoft Press 1988), pages 41-45, 69-81.

Microsoft Press Computer Dictionary (Microsoft Press 1991), definitions of
"concurrent," "concurrent execution," "multitasking," "multithreading,"
"single threading."

Appeal 2007-2127
Reexamination Control No. 90/006,621

157

Microsoft Press Computer Dictionary (2d ed. Microsoft Press 1994),
definition of "processing" and "parallel processing."

Thuyen Nguyen and Robert Moskal, Advanced Programmer's Guide to OS/2
(Brady Books 1989), pages 1-13, 25-30.

Charles Petzold, Programming the OS/2 Presentation Manager (Microsoft
Press 1989), pages 4-5, 786-787.

Martin G. Reiffin, U.S. Patent Application 06/425,612, filed
September 28, 1982.

Abraham Silberschatz and Peter B. Gavin, Operating System Concepts (4th
ed. Addison-Wesley Publ. Co. 1994), pages 3-5

Michael J. Young, Programmer's Guide to OS/2 (Sybex 1988), pages 39, 78,
178-91.

Rodnay Zaks, Programming the Z80 (3d ed. Sybex 1982), pages 500-502.

Appeal 2007-2127
Reexamination Control No. 90/006,621

158

Martin G. Reiffin
47 Pheasant Run Terrace
Danville, CA 94506

	fd2007-2127 mailed.pdf
	fd2007-2127.References.pdf

